Answer on Question #65385 - Math - Statistics and Probability

Question: Let $x_{1,}x_{2,...,}x_{n}$ be a random sample from a distribution with density function $f(x|\alpha) = \begin{cases} \frac{1}{\alpha}, & 0 \le x \le \alpha; \\ 0, & otherwise \end{cases}$

Obtain the maximum likelihood estimator of α .

Solution: Let $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$ be the order statistics. The likelihood function is given by

$$L(\alpha; x_{1,} x_{2, \dots, x_{n}}) = f(x_{1,} x_{2, \dots, x_{n}} | \alpha) = \prod_{k=1}^{n} f(x_{k} | \alpha) = \prod_{k=1}^{n} \frac{1}{\alpha} = \alpha^{-n}$$

for $0 \le x_{(1)}$ and $\alpha \ge x_{(n)}$, and 0 otherwise.

Then, the log-likelihood function is equal to

 $\ln L(\alpha; x_1, x_2, ..., x_n) = -n \ln \alpha$ for $0 \le x_{(1)}$ and $\alpha \ge x_{(n)}$, and 0 otherwise.

Now taking the derivative of the log-likelihood wrt α gives:

$$\frac{\partial \ln L(\alpha; x_{1,} x_{2, \cdots,} x_{n})}{\partial \alpha} = -\frac{n}{\alpha} < 0$$

So, we can say that $L(\alpha; x_1, x_2, ..., x_n)$ is a decreasing function for $\alpha \ge x_{(n)}$. Therefore,

 $L(\alpha; x_1, x_2, \dots, x_n)$ is maximized at $\alpha = x_{(n)}$. Hence, the maximum likelihood estimator for α is given by

$$\hat{\alpha} = x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$$

Answer: $\hat{\alpha} = x_{(n)} = \max\{x_1, x_2, \dots, x_n\}$

For maximum likelihood estimation (MLE) see <u>https://en.wikipedia.org/wiki/Maximum_likelihood_estimation_or</u> <u>https://ocw.mit.edu/courses/mathematics/18-443-statistics-for-applications-fall-2006/lecture-notes/lecture2.pdf</u> or <u>https://www.projectrhea.org/rhea/index.php/Maximum_Likelihood_Estimation_Analysis_for_vari</u> ous_Probability_Distributions