Answer on Question\#65286, Math / Differential Equations

6

Question

Calculate the surface integral of $\oiint_{S} \vec{F} d \vec{s}$, where $\vec{F}=2(x, y, z)$, and where S is the surface of the cube define by the relations $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.

Solution

According to divergence theorem:

$$
\begin{gathered}
\oiint_{S} \vec{F} d \vec{s}=\iiint_{V}(\vec{\nabla} \cdot \vec{F}) d V \\
\vec{\nabla} \cdot \vec{F}=2\left(\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}\right)=2(1+1+1)=6 \\
\iiint_{V}(\vec{\nabla} \cdot \vec{F}) d V=\iiint_{V} 6 d V=6 \iiint_{V} d V=6 V
\end{gathered}
$$

Volume of the unit cube is 1 , hence

$$
\oiint_{S} \vec{F} d \vec{s}=6
$$

