## Answer on Question \#65190 - Math - Analytic Geometry

## Question

Find the equation of the sphere which passes through the points $(1,-4,3),(1,-5,2),(1,-3,0)$ and whose centre lies on the plane $x+y+z=0$

## Solution

Mentioned points define some plane. Cross-section of plane and sphere is circle. As all points have the same $x$-coordinate, then circle lay on $y z$-plane. Hence, we can write

$$
\left\{\begin{array}{c}
\left(-4-y_{0}\right)^{2}+\left(3-z_{0}\right)^{2}=r^{2}, \\
\left(-5-y_{0}\right)^{2}+\left(2-z_{0}\right)^{2}=r^{2}, \\
\left(-3-y_{0}\right)^{2}+z_{0}^{2}=r^{2},
\end{array},\left\{\begin{array}{c}
\left(y_{0}+4\right)^{2}+\left(z_{0}-3\right)^{2}=r^{2}, \\
\left(y_{0}+5\right)^{2}+\left(z_{0}-2\right)^{2}=r^{2}, \\
\left(y_{0}+3\right)^{2}+z_{0}^{2}=r^{2},
\end{array}\right.\right.
$$

where $y_{0}, z_{0}$ are coordinates of the center of the circle and, at the same time, coordinates of the center of the sphere; $r$ is a radius of the circle.

Solve system for $y_{0}$ and $z_{0}$ :

$$
\begin{gathered}
\left\{\begin{array}{l}
\left(y_{0}+4\right)^{2}+\left(z_{0}-3\right)^{2}=\left(y_{0}+3\right)^{2}+z_{0}^{2} \\
\left(y_{0}+5\right)^{2}+\left(z_{0}-2\right)^{2}=\left(y_{0}+3\right)^{2}+z_{0}^{2}
\end{array} \rightarrow\right. \\
\left\{\begin{array} { l } 
{ ( 2 y _ { 0 } + 7 ) - 3 ( 2 z _ { 0 } - 3 ) = 0 } \\
{ 2 ( 2 y _ { 0 } + 8 ) - 2 ( 2 z _ { 0 } - 2 ) = 0 }
\end{array} \rightarrow \left\{\begin{array} { l } 
{ 2 y _ { 0 } - 6 z _ { 0 } + 1 6 = 0 } \\
{ 4 y _ { 0 } - 4 z _ { 0 } + 2 0 = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
y_{0}-3 z_{0}+8=0 \\
y_{0}-z_{0}+5=0
\end{array}\right.\right.\right. \\
2 z_{0}-3=0 \rightarrow z_{0}=\frac{3}{2} . \text { Then } y_{0}=z_{0}-5 \rightarrow y_{0}=-\frac{7}{2}
\end{gathered}
$$

$x_{0}$-coordinate can be found from the following condition:

$$
\begin{gathered}
x_{0}+y_{0}+z_{0}=0 \rightarrow x_{0}=-y_{0}-z_{0} \\
x_{0}=\frac{7}{2}-\frac{3}{2}=\frac{4}{2}=2
\end{gathered}
$$

Hence the center of the sphere is

$$
\left(2,-\frac{7}{2}, \frac{3}{2}\right) .
$$

The only thing left is to find squared radius of the sphere. Let's calculate the distance from the center to the $1^{\text {st }}$ point:

$$
\begin{gathered}
R^{2}=(1-2)^{2}+\left(-4-\left(-\frac{7}{2}\right)\right)^{2}+\left(3-\frac{3}{2}\right)^{2} \rightarrow \\
R^{2}=(-1)^{2}+\left(-\frac{1}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2} \rightarrow R^{2}=1+\frac{1}{4}+\frac{9}{4}=\frac{14}{4}
\end{gathered}
$$

Thus, equation of the sphere is

$$
(x-2)^{2}+\left(y+\frac{7}{2}\right)^{2}+\left(z-\frac{3}{2}\right)^{2}=\frac{14}{4} .
$$

Answer: $(x-2)^{2}+\left(y+\frac{7}{2}\right)^{2}+\left(z-\frac{3}{2}\right)^{2}=\frac{14}{4}$.

