Answer on Question 65076 - Math - Differential Equations
Question: Find the equation of the integral surface of the differen-
tial equation (z? — yz)p + (y* — 22)q = 2? — xy which passes through
the linex =1, y = 0.

Solution: Consider a quasilinear equation

a(z,y, 2)p + bz, y, 2)q = c(z,y, 2).
By Lagrange’s method the auxiliary equations are as following:

dx dy dz

a(z,y, z) - b(x,y,z) - c(x,y,2)
So, for the given quasilinear equation we come to the system in the
symmetric form

dx dy dz
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One of a way to solve the system in symmetric form is to use the equal
fractions property
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In our case we have
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Integrating of the last equality yields

= Injlz—yl=Inly—z|+In|Cy] = x:y:Cl.

Since the system (1) is invariant under the cyclic interchange of vari-
ables © — y +— 2z +— x, there exist two integrals
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Therefore any integral surface of the differential equation (2% — yz)p +
(y* — zx)q = 2* — xy is described by the equation

F(x_y,y_z):o,
y—z z—=x

where F' is a smooth function. If we substitute the conditions z = 1
and y = 0, then

F —1, “ ) =0or F T,—L =0
z z—1 T+1

We see that the last relation does not define the function F' uniquely.
Hence, the problem admits many solutions.

Answer: F (ﬂ u) = 0, where F' = F(£,n) is a C'-function

y—z' z—x

such that F (7', —L) = 0.
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