Answer on Question 65076 - Math - Differential Equations

Question: Find the equation of the integral surface of the differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$ which passes through the line $x=1, y=0$.

Solution: Consider a quasilinear equation

$$
a(x, y, z) p+b(x, y, z) q=c(x, y, z) .
$$

By Lagrange's method the auxiliary equations are as following:

$$
\frac{d x}{a(x, y, z)}=\frac{d y}{b(x, y, z)}=\frac{d z}{c(x, y, z)} .
$$

So, for the given quasilinear equation we come to the system in the symmetric form

$$
\begin{equation*}
\frac{d x}{x^{2}-y z}=\frac{d y}{y^{2}-z x}=\frac{d z}{z^{2}-x y} . \tag{1}
\end{equation*}
$$

One of a way to solve the system in symmetric form is to use the equal fractions property

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}=\frac{\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}}{\lambda_{1} b_{1}+\lambda_{2} b_{2}+\cdots+\lambda_{n} b_{n}} .
$$

In our case we have

$$
\begin{aligned}
\frac{d x-d y}{x^{2}-y z-y^{2}+z x} & =\frac{d y-d z}{y^{2}-z x-z^{2}+x y}, \\
\frac{d(x-y)}{x^{2}-y^{2}+z(x-y)} & =\frac{d(y-z)}{y^{2}-z^{2}+x(y-z)}, \\
\frac{d(x-y)}{(x-y)(x+y+z)} & =\frac{d(y-z)}{(y-z)(x+y+z)}, \\
\frac{d(x-y)}{x-y} & =\frac{d(y-z)}{y-z} .
\end{aligned}
$$

Integrating of the last equality yields

$$
\begin{aligned}
\int \frac{d(x-y)}{x-y} & =\int \frac{d(y-z)}{y-z} \\
& \Rightarrow \ln |x-y|=\ln |y-z|+\ln \left|C_{1}\right| \quad \Rightarrow \quad \frac{x-y}{y-z}=C_{1} .
\end{aligned}
$$

Since the system (1) is invariant under the cyclic interchange of variables $x \mapsto y \mapsto z \mapsto x$, there exist two integrals

$$
\frac{x-y}{y-z}=C_{1}, \quad \frac{y-z}{z-x}=C_{2} .
$$

Therefore any integral surface of the differential equation $\left(x^{2}-y z\right) p+$ $\left(y^{2}-z x\right) q=z^{2}-x y$ is described by the equation

$$
F\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right)=0
$$

where F is a smooth function. If we substitute the conditions $x=1$ and $y=0$, then

$$
F\left(-\frac{1}{z}, \frac{-z}{z-1}\right)=0 \text { or } F\left(\tau,-\frac{1}{\tau+1}\right)=0 .
$$

We see that the last relation does not define the function F uniquely. Hence, the problem admits many solutions.

Answer: $F\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right)=0$, where $F=F(\xi, \eta)$ is a C^{1}-function such that $F\left(\tau,-\frac{1}{\tau+1}\right)=0$.

