Answer on Question \#64892 - Math - Linear Algebra
 Question

Which of the following are binary operations on $S=\{x \in R \mid x>0\}$? Justify your answer.
i) The operation Δ defined by $x \Delta y=x(y-2)$.
ii) The operation ∇ defined by $x \nabla y=e^{\wedge} x+y$.

Also, for those operations which are binary operations, check whether they are associative and commutative.

Solution

$$
S=\{x \in R \mid x>0\} .
$$

i. $\quad x \Delta y=x(y-2)$

Binary operation: $S \times S \rightarrow S$, so for any $x \in S, y \in S, x(y-2)$ must be an element of S.
So $x(y-2)$ must be positive for any positive x, y. If $0<y<2$, then $x(y-2)<0 \Rightarrow x \Delta y \notin S$
So $x \Delta y=x(y-2)$ is not a binary operation on $\mathrm{S}=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x}>0\}$;
ii. $\quad x \nabla y=e^{x}+y$

Binary operation: $S \times S \rightarrow S$, so for any $x \in S, y \in S, e^{x}+y$ must be an element of S.
That is true, because for any positive $x, y-e^{x}+y$ is also positive $\Rightarrow x \Delta y \in S$.
So $x \nabla y=e^{x}+y$ is a binary operation on $\mathrm{S}=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x}>0\}$;
Associativity:

$$
\begin{aligned}
& ((x \nabla y) \nabla z=x \nabla(y \nabla z)) \\
& (x \nabla y) \nabla z=\left(e^{x}+y\right) \nabla z=e^{e^{x}+y}+z=e^{e^{x}} * e^{y}+z \\
& x \nabla(y \nabla z)=x \nabla\left(e^{y}+z\right)=e^{x}+e^{y}+z ; \\
& e^{e^{x}} * e^{y}+z \neq e^{x}+e^{y}+z \Rightarrow(x \nabla y) \nabla z \neq x \nabla(y \nabla z)
\end{aligned}
$$

Operation is not associative.
Commutativity:

$$
\begin{aligned}
& (x \nabla y=y \nabla x) \\
& (x \nabla y)=\left(e^{x}+y\right) ; \\
& (y \nabla x)=\left(e^{y}+x\right) ; \\
& e^{x}+y \neq e^{y}+x \Rightarrow(x \nabla y) \neq(y \nabla x)
\end{aligned}
$$

Operation is not commutative.
Answer: ii) is a binary relation, not associative, not com mutative.

