Answer on Question #64892 – Math – Linear Algebra

Question

Which of the following are binary operations on $S = \{x \in R \mid x > 0\}$? Justify your answer.

i) The operation Δ defined by $x\Delta y = x(y-2)$.

ii) The operation ∇ defined by $x\nabla y = e^x+y$.

Also, for those operations which are binary operations, check whether they are associative and commutative.

Solution

 $S = \{x \in R \mid x > 0\}.$

i. $\underline{x\Delta y = x(y-2)}$ Binary operation: $S \times S \to S$, so for any $x \in S, y \in S, x(y-2)$ must be an element of S. So x(y-2) must be positive for any positive x, y. If 0 < y < 2, then $x(y-2) < 0 \Rightarrow x\Delta y \notin S$

So $x\Delta y = x(y-2)$ is not a binary operation on **S** = { $x \in \mathbf{R} | x > 0$ };

ii. $\underline{x}\nabla y = e^x + y$

Binary operation: $S \times S \to S$, so for any $x \in S$, $y \in S$, $e^x + y$ must be an element of S. That is true, because for any positive $x, y - e^x + y$ is also positive $\Rightarrow x \Delta y \in S$. So $x \nabla y = e^x + y$ is a binary operation on **S** = {**x** \in **R** | **x** > **0**};

Associativity:

 $((x\nabla y)\nabla z = x\nabla(y\nabla z))$ $(x\nabla y)\nabla z = (e^x + y)\nabla z = e^{e^x + y} + z = e^{e^x} * e^y + z;$ $x\nabla(y\nabla z) = x\nabla(e^y + z) = e^x + e^y + z;$ $e^{e^x} * e^y + z \neq e^x + e^y + z \Rightarrow (x\nabla y)\nabla z \neq x\nabla(y\nabla z)$ Operation is not associative.

Commutativity: $(x\nabla y = y\nabla x)$ $(x\nabla y) = (e^{x} + y);$ $(y\nabla x) = (e^{y} + x);$ $e^{x} + y \neq e^{y} + x \Rightarrow (x\nabla y) \neq (y\nabla x)$

Operation is not commutative.

Answer: ii) is a binary relation, not associative, not com mutative.