Answer on Question \#64865 - Math - Real Analysis

Question

Compute the Riemann integral of the function $f(x)=x$ on the interval $[-1,1]$.

Solution

Theorem 1. If a function f is continuous on an interval $[a, b]$, it is also Riemann-integrable on this interval.
Note that $f(x)=x$ is elementary function, then it is continuous on its domain, so $f(x)=x$ is integrable on the interval $[-1,1]$ and integral $\int_{-1}^{1} f(x) d x$ exists. Compute this integral.

Method 1

Function is odd if $f(-x)=-f(x)$. Note that $f(-x)=-x=-f(x)$, hence $f(x)=x$ is odd. Theorem 2. Let the real function f be Riemann-integrable on $[-a, a]$ and if f is an odd function, then $\int_{-a}^{a} f(x) d x=0$.
By Theorem 2 we get $\int_{-1}^{1} f(x) d x=0$.

Method 2

By the Table of Integrals

$$
\int x d x=\frac{x^{2}}{2}+C
$$

and
Newton-Leibniz rule

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}, \text { where } F^{\prime}=f,
$$

we get

$$
\int_{-1}^{1} f(x) d x=\int_{-1}^{1} x d x=\left.\frac{x^{2}}{2}\right|_{-1} ^{1}=\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}=\frac{1}{2}-\frac{1}{2}=0 .
$$

Answer: 0.

