
 

 

Answer on Question #64858 – Math – Linear Algebra 
 

Question 
Let 2 1:T P P  be defined by  

2( ) ( )T a bx cx b c a c x      . 

Check that T  is a linear transformation. 
Find the matrix of the transformation with respect to the ordered basis  

2 2 2

1 { , , 1}B x x x x x     

 and 

2 {1, }B x . 

Find the kernel of T .  

 
Solution 

A linear transformation [1] between two vector spaces [2] V  and W  is a map [3] :T V W  

such that the following properties hold: 

(1) 1 2 1 2( ) ( ) ( )T v v T v T v    for any vectors 1 2,v v V ; 

(2) ( ) ( )T v T v    for any scalar  and any v V . 

Let’s check the properties in our case: 

(1) Let 2

0 1 2p k k x k x    and 2

0 1 2q l l x l x    be polynomials in 2P . 
Note that 

 2 2 2

0 1 2 0 1 2 0 0 1 1 2 2( ) ( ) ( )p q k k x k x l l x l x k l k l x k l x              
and by definition of T  we get: 

2

0 0 1 1 2 2 1 1 2 2 0 0 2 2

1 1 2 2 0 0 2 2

( ) (( ) ( ) ( ) ) ( ) ( ) (( ) ( ))

( )

T p q T k l k l x k l x k l k l k l k l x

k l k l k l k l x

               

       
   

and 

 2 2

0 1 2 0 1 2 1 2 0 2 1 2 0 2( ) ( ) ( ) ( ) ( ) ( )T p T q T k k x k x T l l x l x k k k k x l l l l x                 

1 1 2 2 0 0 2 2( )k l k l k l k l x          

Thus, we can see that 
( ) ( ) ( )T p q T p T q   , 

 so the property (1) holds.  

     (2) Let  2

0 1 2p k k x k x    and let   be a scalar. 
2

0 1 2 1 2 0 2 1 2 0 2( ) ( ) ( ) ( ) ( )T p T k k x k x k k k k x k k k k x                    , 

while 

1 2 0 2 1 2 0 2( ) (( ) ( ) ) ( ) ( )T p k k k k x k k k k x           . 

Therefore, 
( ) ( )T p T p  , 

 so the property (2) holds as well.  
Thus, T  is a linear transformation. 
 
To find the matrix of the transformation with respect to the ordered basis we need to apply the 
transformation to the basis and the result is the column of the transformation matrix. 

 2( ) 0, 0, 1, 1, 1 1T x here a b c and a c b c x           ; 

 2( ) 0, 1, 1, 1, 2 2T x x here a b c and a c b c x            ; 

http://mathworld.wolfram.com/VectorSpace.html


 

 

 2(1 ) 1, 1, 1, 0, 2 2T x x here a b c and a c b c           ; 

Next, we find the coordinates for each of the above polynomials in the second basis: 
1 1 1 ( 1) (1, 1)x x        ; 

2 2 1 ( 1) (2, 1)x x        ; 

2 2 1 0 (2,0)x     ; 

Thus, the matrix representation of T  with respect to the given basies is   

1 2

1 2 2
[ , ]

1 1 0
T B B

 
  

  
 

For  transormation 2 1:T P P  the kernel [4] (also called the null space [5]) is defined by  
2( ) { : ( ) 0}Ker T p P T p   , 

so the kernel gives the elements from the original set 2P   that are mapped to zero by the 
transformation.  

Let  2

0 1 2p k k x k x    is arbitrarily polynomial from 2P . Note that   
2

0 1 2 1 2 0 2( ) ( )T k k x k x k k k k x      , 

 and solve the equation 

1 2 0 2( ) 0k k k k x    . 

Two polynomials are equal if and only if the coefficients of the corresponding powers are equal, 
hence we get the system of two equations: 

0 2

1 2

0, (1)

0. (2)

k k

k k

 


 
 

It follows from (1) that 

2 0k k  

and substituting into (2) one gets 

1 0k k  . 

Thus, the polynomial p  belongs to the kernel of the transformation T  if p  has the form  
2

0 0 0p k k x k x    

and  
2 2

0 0 0( ) { : }Ker T p P p k k x k x     . 

Answer:  
T  is a linear transformation; 

1 2

1 2 2
[ , ]

1 1 0
T B B

 
  

  
;  

2 2

0 0 0( ) { : }Ker T p P p k k x k x     . 
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