Answer on Question \#64856 - Math - Linear Algebra

Question

Find the orthogonal canonical reduction of the quadratic form

$$
-x^{2}+y^{2}+z^{2}+2 x y-2 x z+2 y z
$$

Also, find its principal axes.

Solution

Denote by f this quadratic form. Then $f(R)=R^{T} A R$, where

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right)
$$

is a 3×3 matrix,

$$
R=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

is a column (3×1 matrix).
So, it is required to find a orthogonal matrix Q such that

$$
Q^{T} Q=E
$$

and

$$
f(R)=d_{1} x^{\prime 2}+d_{2} y^{\prime 2}+d_{3} z^{\prime 2}
$$

where

$$
\begin{aligned}
R & =Q R^{\prime} \\
R^{\prime} & =\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
\end{aligned}
$$

i.e., $f(R)=R^{\prime T} D R^{\prime}$, where D is a diagonal 3×3 matrix,

$$
D=\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right)
$$

E is a unit matrix.
Then

$$
f(R)=R^{\prime T} Q^{T} A Q R^{\prime}
$$

Therefore $D=Q^{T} A Q$ and $A Q=Q D$.
Then $\sum_{j}^{3} A_{i j} Q_{j k}=d_{k} Q_{i k}$ (the first index is the number of a row and the second index is the number of a column). So the columns of Q are eigenvectors of A and d_{1}, d_{2}, d_{3} are eigenvalues of A.
Eigenvalues of A are roots of the polynomial
$\operatorname{det}(\mathrm{A}-d \mathrm{E})=\operatorname{det}\left(\begin{array}{ccc}1-d & 1 & -1 \\ 1 & 1-d & 1 \\ -1 & 1 & 1-d\end{array}\right)=-d^{3}+3 d^{2}-4=-(d+1)(d-2)^{2}$.
This polynomial has a single root -1 and double root 2 .
The coordinates of the eigenvector of A associated with eigenvalue -1 are a solution of a linear system $(\mathrm{A}+\mathrm{E}) \mathrm{U}=0$ with respect to U. This system can be written as

$$
\left\{\begin{array}{c}
2 u_{1}+u_{2}-u_{3}=0 \\
u_{1}+2 u_{2}+u_{3}=0 \\
-u_{1}+u_{2}+2 u_{3}=0
\end{array}\right.
$$

Hence $u_{1}=u_{3}, u_{2}=-u_{3} . Q$ is orthogonal, it follows that $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1=3 u_{3}^{2}$. Therefore $u_{1}=\frac{1}{\sqrt{3}}, u_{2}=-\frac{1}{\sqrt{3}}, u_{3}=\frac{1}{\sqrt{3}}$.
The coordinates of the eigenvectors of A with eigenvalues 2 are a solution of a linear system $(\mathrm{A}-2 \mathrm{E}) \mathrm{U}=0$ with respect to U :

$$
\left\{\begin{array}{l}
-u_{1}+u_{2}-u_{3}=0 \\
u_{1}-u_{2}+u_{3}=0 \\
-u_{1}+u_{2}-u_{3}=0
\end{array}\right.
$$

The rank of this system is equal to 1 and there are two linearly independent solutions of this system. It follows from $u_{1}=-u_{3} / 2, u_{2}=u_{3} / 2 . u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1=\frac{3}{2} u_{3}^{2}$ that the first solution is

$$
u_{1}=-\frac{1}{\sqrt{6}}, u_{2}=\frac{1}{\sqrt{6}}, u_{3}=\frac{\sqrt{2}}{\sqrt{3}} .
$$

The solution that is orthogonal to it is a solution of the system
$\left\{\begin{array}{c}-u_{1}+u_{2}-u_{3}=0, \\ -\frac{1}{\sqrt{6}} u_{1}+\frac{1}{\sqrt{6}} u_{2}+\frac{\sqrt{2}}{\sqrt{3}} u_{3}=0,\end{array}\right.$
that is,

$$
\left\{\begin{array}{l}
-u_{1}+u_{2}-u_{3}=0 \\
-u_{1}+u_{2}+2 u_{3}=0
\end{array}\right.
$$

Then

$$
u_{3}=0, u_{1}=u_{2}, u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1=2 u_{1}^{2}, \text { hence } u_{1}=u_{2}=\frac{1}{\sqrt{2}}, u_{3}=0
$$

Therefore

$$
\begin{gathered}
Q=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{\sqrt{2}}{\sqrt{3}} & 0
\end{array}\right), \\
x=\frac{1}{\sqrt{3}} x^{\prime}-\frac{1}{\sqrt{6}} y^{\prime}+\frac{1}{\sqrt{2}} z^{\prime} \\
y=-\frac{1}{\sqrt{3}} x^{\prime}+\frac{1}{\sqrt{6}} y^{\prime}+\frac{1}{\sqrt{2}} z^{\prime}, \\
z=\frac{1}{\sqrt{3}} x^{\prime}+\frac{\sqrt{2}}{\sqrt{3}} y^{\prime}, \\
x^{\prime}=\frac{1}{\sqrt{3}} x-\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z \\
y^{\prime}=-\frac{1}{\sqrt{6}} x+\frac{1}{\sqrt{6}} y+\frac{\sqrt{2}}{\sqrt{3}} z \\
z^{\prime}=\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y .
\end{gathered}
$$

Principal axes are such columns e_{1}, e_{2}, e_{3} that are a basis and the coordinates of R in this basis are $x^{\prime}, y^{\prime}, z^{\prime}$:

$$
R=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x^{\prime} e_{1}+y^{\prime} e_{2}+z^{\prime} e_{3}
$$

for any R.
It means that $R=\left(e_{1}, e_{2}, e_{3}\right) R^{\prime}$, where $\left(e_{1}, e_{2}, e_{3}\right)$ is a matrix composed by columns e_{1}, e_{2}, e_{3}. Therefore $Q=\left(e_{1}, e_{2}, e_{3}\right)$ and the principal axes are the columns of Q.

Answer:

The orthogonal canonical reduction is

$$
\begin{gathered}
x=\frac{1}{\sqrt{3}} x^{\prime}-\frac{1}{\sqrt{6}} y^{\prime}+\frac{1}{\sqrt{2}} z^{\prime} \\
y=-\frac{1}{\sqrt{3}} x^{\prime}+\frac{1}{\sqrt{6}} y^{\prime}+\frac{1}{\sqrt{2}} z^{\prime}, \\
z=\frac{1}{\sqrt{3}} x^{\prime}+\frac{\sqrt{2}}{\sqrt{3}} y^{\prime} \\
x^{\prime}=\frac{1}{\sqrt{3}} x-\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z \\
y^{\prime}=-\frac{1}{\sqrt{6}} x+\frac{1}{\sqrt{6}} y+\frac{\sqrt{2}}{\sqrt{3}} z \\
z^{\prime}=\frac{1}{\sqrt{2}} x+\frac{1}{\sqrt{2}} y
\end{gathered}
$$

Then the reduced form is

$$
-x^{\prime 2}+2 y^{\prime 2}+2 z^{\prime 2}
$$

The principal axes are

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right),\left(\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{\sqrt{2}}{\sqrt{3}}
\end{array}\right),\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right) .
$$

