Answer on Question \#64817 - Math - Algebra

Question

In (triangle) $A B C,<C$ is a right angle, $a=3, c=19$. Find the remaining sides and angles. Round your answers to the nearest tenth. Show your work.

Solution

If $a=3, c=19$
$b=\sqrt{c^{2}-a^{2}}=\sqrt{19^{2}-3^{2}}=\sqrt{352} \approx 18.8$.
$\sin A=\frac{a}{c}=\frac{3}{19} \rightarrow A=\sin ^{-1}\left(\frac{3}{19}\right) \approx 9.1^{0}$.
$B=90^{\circ}-A=90^{0}-9.1^{0}=80.9^{0}$.
Answer: 18.8; 9.1 ${ }^{0} ; 80.9^{0}$.

Question

Find the values of the 30th and 90th percentiles of the data. Show your work. $129,113,200,100,105,132,100,176,146,152$

Solution

Ordered data:
100, 100, 105, 113, 129, 132, 146, 152, 176, 200.
Find out what rank is at the $30^{\text {th }}$ percentile by means of the following formula

$$
\text { Rank }=\frac{\text { Percentile }}{100} \cdot(\text { number of items }+1)=\frac{30}{100} \cdot 11=3.3
$$

As 3.3 is closer to 3 than 4 , one will round down to a rank of 3
There exists three ways of definition of the $30^{\text {th }}$ percentile.
The most popular is Definition 1.
Definition 1. The $30^{\text {th }}$ percentile is the lowest score that is greater than 30% of the score. That has a rank of 4 and equals a score of 113.
Definition 2. The $30^{\text {th }}$ percentile is the lowest score that is greater than or equal to 30% of the scores. That has a rank of 3 and equals a score of 105 .

Definition 3. The $30^{\text {th }}$ percentile is a weighted mean of the percentiles from the first two definitions.

As 3.3 is between 3 and 4, the scores were 105 and 113, the fraction of the rank calculated above is 0.3 , one should multiply the difference between the scores by 0.3:

$$
0.3 \cdot(113-105)=0.3 \cdot 8=2.4
$$

Finally add the result to the lower score

$$
105+2.4=107.4
$$

Find out what rank is at the $90^{\text {th }}$ percentile by means of the following formula

$$
\text { Rank }=\frac{\text { Percentile }}{100} \cdot(\text { number of items }+1)=\frac{90}{100} \cdot 11=9.9
$$

As 9.9 is closer to 10 than 9 , one will round to a rank of 10 .
The $90^{\text {th }}$ percentile is 200.
Answer: 113; 200

Question

Verify the identity. Justify each step.
sec 0

$$
\sec 0
$$

\qquad - $\quad=2 \csc 0$
$\csc 0-\cot 0 \quad \csc 0+\cot 0$

Solution

$$
\begin{aligned}
\frac{\sec \theta}{\csc \theta-\cot \theta} & -\frac{\sec \theta}{\csc \theta+\cot \theta}=\sec \theta\left(\frac{1}{\csc \theta-\cot \theta}-\frac{1}{\csc \theta+\cot \theta}\right) \\
& =\frac{\sec \theta(\csc \theta+\cot \theta-\csc \theta+\cot \theta)}{\csc ^{2} \theta-\cot ^{2} \theta}==\frac{\sec \theta \cdot 2 \cot \theta}{\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}}=\frac{\frac{2 \cos \theta}{\sin ^{2} \theta}}{\frac{\sin ^{2} \theta}{\sin ^{2} \theta}} \\
& =\frac{\frac{2 \cos \theta}{\sin ^{2} \theta}}{1}=\frac{2 \cos \theta}{\sin ^{2} \theta}=\frac{2}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

Using the definition of the cosecant

$$
2 \csc \theta=\frac{2}{\sin \theta}
$$

It follows from the previous formulas that

$$
\begin{gathered}
\frac{\sec \theta}{\csc \theta-\cot \theta}-\frac{\sec \theta}{\csc \theta+\cot \theta}= \\
\text { that is, } \\
\theta=\frac{\pi}{4}+n \pi, n \in \mathbb{Z} .
\end{gathered}
$$

It is not identity. It is an equation. Its roots are $\theta=\frac{\pi}{4}+n \pi, n \in \mathbb{Z}$.
Answer: $\theta=\frac{\pi}{4}+n \pi, n \in \mathbb{Z}$.

