Answer on Question \#64793 - Math - Calculus

Question

How do I find the recursive definition of an arithmetic sequence

Solution

An arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant. Hence each term of the arithmetic sequence is computed from the previous one by adding a constant d.

The recursive formula is

$$
\begin{equation*}
a_{n}=a_{n-1}+d \tag{1}
\end{equation*}
$$

The previous formula can be rewritten as

$$
\begin{aligned}
& a_{n}=a_{n-1}+d=a_{n-2}+2 d=a_{n-3}+3 d=\cdots=a_{n-(n-1)}+(n-1) d= \\
= & a_{1}+(n-1) d
\end{aligned}
$$

If the initial term of an arithmetic progression is a_{1} and the common difference of successive terms is d, then the $n t h$ term of the sequence $\left(a_{n}\right)$ is given by the explicit formula:

$$
\begin{equation*}
a_{n}=a_{1}+(n-1) d \tag{2}
\end{equation*}
$$

It follows from the formula (2) that

$$
\begin{equation*}
a_{m}=a_{1}+(m-1) d \tag{3}
\end{equation*}
$$

Subtracting (3) from (2) one gets

$$
\begin{aligned}
& a_{n}-a_{m}=a_{1}+(n-1) d-\left(a_{1}+(m-1) d\right)=(n-1) d-(m-1) d= \\
= & (n-m) d
\end{aligned}
$$

hence

$$
\begin{equation*}
a_{n}=a_{m}+(n-m) d \tag{4}
\end{equation*}
$$

If $m=n-1$, then the formula (4) gives the formula (1).
If $m=1$, then the formula (4) gives the formula (2).
Answer: $a_{n}=a_{n-1}+d$.

