Answer on Question \#64791 - Math - Calculus

Question

For each of the following curves, make a sketch of the curve and find:
I. the gradient function
II. the gradient of the tangent at the given point.

a. $y=x^{2}+3$ at point $(2,7)$

Solution

I. The gradient function gives the slope of a function at any single point on its curve. The slope of a curve at a point is defined to be the slope of the tangent line. Hence the slope of a curve at a point is found using the derivative.
The slope of a function $y=f(x)$ at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
m=f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Thus, the gradient function is

$$
\nabla y=\frac{d y}{d x}=\left(x^{2}+3\right)^{\prime}=\left(x^{2}\right)^{\prime}+3^{\prime}=2 x+0=2 x
$$

II.

Method 1

The gradient of the tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)=(2,7) \quad$ is

$$
f^{\prime}\left(x_{0}\right)=f^{\prime}(2)=2 \cdot 2=4
$$

Method 2
Equation of the tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Substituting

$$
\begin{gathered}
x_{0}=2, f\left(x_{0}\right)=7 \\
f^{\prime}\left(x_{0}\right)=f^{\prime}(2)=2 \cdot 2=4
\end{gathered}
$$

one gets

$$
\begin{gathered}
y-7=4(x-2) \\
y=4 x-1
\end{gathered}
$$

The gradient of the tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)=(2,7)$ is the slope of $y=4 x-1$:

$$
m=4
$$

Answer: I. 2x. II. 4.

Question

For each of the following curves, make a sketch of the curve and find:
I. the gradient function
II. the gradient of the tangent at the given point.
b. $y=x^{2}+k$ at point $(1,1+k)$

Solution

I.

The gradient function gives the slope of a function at any single point on its curve. The slope of a curve at a point is defined to be the slope of the tangent line.
Hence the slope of a curve at a point is found using the derivative.
The slope of a function $y=f(x)$ at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
m=f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Thus, the gradient function is

$$
\nabla y=\frac{d y}{d x}=\left(x^{2}+k\right)^{\prime}=\left(x^{2}\right)^{\prime}+k^{\prime}=2 x+0=2 x
$$

II.

Method 1

The gradient of the tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)=(1,1+k) \quad$ is

$$
f^{\prime}\left(x_{0}\right)=f^{\prime}(1)=2 \cdot 1=2
$$

Method 2

Equation of tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)$ is given by

$$
y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Substituting

$$
\begin{gathered}
x_{0}=1, f\left(x_{0}\right)=1+k \\
f^{\prime}\left(x_{0}\right)=2 \cdot 1=2
\end{gathered}
$$

one gets

$$
\begin{gathered}
y-(1+k)=2(x-1) \\
y=2 x-1+k
\end{gathered}
$$

The gradient of the tangent at the given point $\left(x_{0}, f\left(x_{0}\right)\right)=(1,1+k)$ is the slope of $y=2 x-1+k$:

$$
m=2
$$

Answer: I. 2x. II. 2.

