Answer on Question \#64773 - Math - Differential Equations

Question

Solve (D3-7D+12)y=x3-5x2

Solution

To solve a nonhomogeneous linear differential equation (DE)
$\left(D^{3}-7 D+12\right) y=x^{3}-5 x^{2}$,
that is,
$y^{\prime \prime \prime}-7 y^{\prime}+12 y=x^{3}-5 x^{2}$
we must

1) find the complementary function y_{c} that is the general solution of the associated homogeneous DE

$$
y^{\prime \prime \prime}-7 y^{\prime}+12 y=0
$$

2) find any particular solution y_{p} of the nonhomogeneous equation

$$
y^{\prime \prime \prime}-7 y^{\prime}+12 y=x^{3}-5 x^{2}
$$

The general solution of the equation (1) is $y=y_{c}+y_{p}$.

1) To solve the associated homogeneous DE
$y^{\prime \prime \prime}-7 y^{\prime}+12 y=0$
we substitute into equation the solution as exponential function $y=e^{m x}$. We get

$$
\begin{equation*}
m^{3} e^{m x}-7 m e^{m x}+5 e^{m x}=0 \tag{2}
\end{equation*}
$$

or
$\left(m^{3}-7 m+12\right) e^{m x}=0$.
Since $e^{m x}$ is never zero for real values of x, the last equation is satisfied only when m is a solution or root of the third-degree polynomial equation

$$
m^{3}-7 m+12=0 .
$$

This equation is called the auxiliary equation of the differential equation (2).
Analytical solution of this equation is a difficult task. Approximate numerical solution is $m_{1} \approx 1.63-1.00 i, m_{2} \approx 1.63+1.00 i, m_{3} \approx-3.27$.
Thus we have three different roots of the auxiliary equation and the general solution of the associated homogeneous DE is
$y_{c}=C_{1} e^{(1.63-1.00 i) x}+C_{2} e^{(1.63+1.00 i) x}+C_{3} e^{-3.27 x}$.
Now we use Euler's formula $e^{i \beta}=\cos \beta+i \sin \beta$. Then we get

$$
y_{c}=c_{1} e^{1.63 x} \cos x+c_{2} e^{1.63 x} \sin x+c_{3} e^{-3.27 x}
$$

where c_{1}, c_{2}, c_{3} are constants.
2) The particular solution of the nonhomogeneous equation will be found in the following form:

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

where A, B, C, D are the undetermined coefficients.
Substituting this solution into the equation (1) and equating the coefficients of corresponding terms, we find A, B, C, D. Find derivatives $y^{\prime}{ }_{p^{\prime}} y^{\prime \prime}{ }_{p^{\prime}} y^{\prime \prime \prime}{ }_{p}$
$y_{p}^{\prime}=3 A x^{2}+2 B x+C$
$y^{\prime \prime}{ }_{p}=6 A x+2 B$
$y^{\prime \prime \prime}{ }_{p}=6 A$
Substituting the derivatives into the equation (1)

$$
6 A-7\left(3 A x^{2}+2 B x+C\right)+12\left(A x^{3}+B x^{2}+C x+D\right)=x^{3}-5 x^{2}
$$

Equating the coefficients of corresponding terms, we find

$$
\begin{aligned}
& \left\{\begin{array}{l}
12 A=1, \\
-21 A+12 B=-5 \\
-14 B+12 C=0 \\
6 A-7 C+12 D=0
\end{array}\right. \\
& \left\{\begin{array}{l}
A=\frac{1}{12} \approx 0.083, \\
-21 \cdot 0.083+12 B=-5 \\
-14 B+12 C=0 \\
6 \cdot 0.083-7 C+12 D=0
\end{array}\right. \\
& \left\{\begin{array}{l}
12 B=-5+1.743=-3,257 \\
-14 B+12 C=0 \\
0.5-7 C+12 D=0
\end{array}\right. \\
& \left\{\begin{array}{l}
B=-\frac{39}{144} \approx-0.271 \\
14 \cdot 0.271+12 C=0 \\
\frac{1}{2}-7 C+12 D=0
\end{array}\right. \\
& \left\{\begin{array}{l}
C=-0.316 \\
\frac{1}{2}+7 \cdot 0.316+12 D=0 \\
D \approx-0.226
\end{array}\right.
\end{aligned}
$$

So we have $A \approx 0.083, B \approx-0.271, C \approx-0.316, D \approx-0.226$ and finally we get the general solution of differential equation (1):

$$
y=c_{1} e^{1.63 x} \cos x+c_{2} e^{1.63 x} \sin x+c_{3} e^{-3.27 x}+0.083 x^{3}-0.271 x^{2}-0.316 x-0.226 .
$$

Answer:

$$
y=c_{1} e^{1.63 x} \cos x+c_{2} e^{1.63 x} \sin x+c_{3} e^{-3.27 x}+0.083 x^{3}-0.271 x^{2}-0.316 x-0.226 .
$$

