## Answer on Question \#64772 - Math - Differential Equations <br> Question

Solve

$$
y^{\prime \prime \prime}-7 y^{\prime}-6 y=1+x
$$

## Solution

Equation

$$
\left(D^{3}-7 D-6\right) y=1+x
$$

that is,

$$
y^{\prime \prime \prime}-7 y^{\prime}-6 y=1+x
$$

is a linear non-homogeneous ordinary differential equation of the third order.
First, we solve the corresponding characteristic equation:

$$
\begin{gathered}
k^{3}-7 k-6=0 \\
(k+1)\left(k^{2}-k-6\right)=0 \\
(k+1)(k+2)(k-3)=0 \\
k=-1, k=-2, k=3
\end{gathered}
$$

Then the solution of the homogeneous differential equation is the complementary function

$$
y_{\mathrm{c}}(x)=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}
$$

where $c_{1}, c_{2}$, and $c_{3}$ are any real constants.
The additional solution to the complementary function is a particular integral, which we looking for in the form of

$$
y_{p}(x)=a x+b
$$

To find the unknown constants $a$ and $b$ we substitute $y_{p}$ into the original equation:

$$
\begin{gathered}
(a x+b)^{\prime \prime \prime}-7(a x+b)^{\prime}-6(a x+b)=1+x \\
-7 a-6 b-6 a x=1+x
\end{gathered}
$$

Now we equate the coefficients of equal powers of $x$ :

$$
-7 a-6 b=1
$$

and

$$
-6 a=1
$$

whence

$$
a=-\frac{1}{6}, \text { and } b=\frac{1}{36}
$$

So we have

$$
y_{p}(x)=-\frac{1}{6} x+\frac{1}{36}
$$

Finally, the general solution to the given differential equation can be written as

$$
y(x)=y_{\mathrm{c}}(x)+y_{p}(x)=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}-\frac{1}{6} x+\frac{1}{36}
$$

Answer: $y(x)=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{3 x}-\frac{1}{6} x+\frac{1}{36}$.

