Answer on Question \#64761 - Math - Geometry

Question

In a rectangular parallelepiped the length and width of the base are 12 in . and 9 in respectively. find the volume of the solid if the length of the diagonal of the solid is 25 inches.

Solution

Given

$$
A B=C D=A_{1} B_{1}=C_{1} D_{1}=9 \text { in., } A D=B C=A_{1} D_{1}=B_{1} C_{1}=12 \mathrm{in}, B_{1} D=25 \mathrm{in} .
$$

We can find the bases diagonal from the right triangle ABD using the Pythagorean theorem:

$$
B D=\sqrt{A B^{2}+A D^{2}}=\sqrt{9^{2}+12^{2}}=\sqrt{81+144}=\sqrt{225}=15 \mathrm{in} .
$$

Angle $B_{1} B D$ is right, applying the Pythagorean theorem to the right triangle $B_{1} D$ compute

$$
B B_{1}=\sqrt{B_{1} D^{2}-B D^{2}}=\sqrt{25^{2}-15^{2}}=\sqrt{625-225}=\sqrt{400}=20 \mathrm{in} .
$$

Thus, the volume of the solid is

$$
V=A B \cdot B C \cdot B B_{1}=9 \cdot 12 \cdot 20=2160 \mathrm{in}^{3} .
$$

Answer: $V=2160 \mathrm{in}^{3}$.

