Answer on Question \#64620 - Math - Differential Equations

Question

Solve the following differential equation:

$$
(D 3+D 2-4 D+4) y=e^{2 x}
$$

Solution

Consider the following problem:

$$
(D 3-D 2-4 D+4) y=e^{2 x}
$$

The reduced equation is

$$
\left(D^{3}-D^{2}-4 D+4\right) y=0
$$

Let $y=A e^{m x}$ be a trial solution of reduced equation and then the auxiliary equation is

$$
\begin{gathered}
m^{3}-m^{2}-4 m+4=0 ; \\
(m-1)(m-2)(m+2)=0 ; \\
m=-2,1,2 .
\end{gathered}
$$

The complementary function is

$$
y=c_{1} e^{2 x}+c_{2} e^{x}+c_{3} e^{-2 x} .
$$

$Q(x)=e^{2 x}$.
A particular solution to the inhomogeneous equation is

$$
x \cdot \frac{1}{f^{\prime}(2)} e^{2 x} .
$$

Compute

$$
\begin{gathered}
\left(D^{3}-D^{2}-4 D+4\right)^{\prime}=3 D^{2}-2 D-4 \\
f^{\prime}(2)=3 \cdot 2^{2}-2 \cdot 2-4=4
\end{gathered}
$$

Thus

$$
x \cdot \frac{1}{f^{\prime}(2)} e^{2 x}=\frac{1}{4} x e^{2 x} .
$$

Hence the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{x}+c_{3} e^{-2 x}+\frac{1}{4} x e^{2 x} .
$$

Answer: $y=c_{1} e^{2 x}+c_{2} e^{x}+c_{3} e^{-2 x}+\frac{1}{4} x e^{2 x}$.

