Answer on Question \#64618 - Math - Calculus

Question

1. A page is to contain 24 square inches of print. The margins at top and bottom are 1.5 inches, at the side is 1 inches. Find the most economical dimension of the page.

Solution

Let x and y be the length and width of the page (measured in inches).
Then area of print is

$$
\text { Area }=(x-2 \cdot 1.5)(y-2 \cdot 1)=24=>y=2+\frac{24}{x-3} .
$$

The area of the page is

$$
S=x y=x\left(2+\frac{24}{x-3}\right)
$$

Minimizing the area of the poster
$S^{\prime}(x)=\left(2 x+\frac{24 x}{x-3}\right)^{\prime}=2+24 \frac{x-3-x}{(x-3)^{2}}=2-\frac{72}{(x-3)^{2}}$;
$S^{\prime}(x)=0=>2-\frac{72}{(x-3)^{2}}=0, x>3$;
$(x-3)^{2}=36, x=9$.
Since

$$
\begin{gathered}
S^{\prime \prime}(x)=\left(2-\frac{72}{(x-3)^{2}}\right)^{\prime}=\frac{144}{(x-4)^{3}}, \\
S^{\prime \prime}(9)=\frac{144}{(9-3)^{3}}=\frac{2}{3}>0 .
\end{gathered}
$$

$S(x)$ takes the minimum at $x=9$ on $(3, \infty)$:

$$
y=2+\frac{24}{9-3}=6 \text { (inches) }
$$

So the smallest page has dimension 9 inches $\times 6$ inches.
Answer: 9 inches and 6 inches.

Question

2. A Norman window consists of a rectangle surrounded by a semi-circle. What shape gives the most light for a GIVEN perimeter?

Solution

Let x denote half the width of the rectangle (so x is the radius of the semicircle), and let y denote the height of the rectangle. Then the perimeter of the window is

$$
P=2 y+2 x+\frac{1}{2} \pi 2 x=>y=\frac{P-(2+\pi) x}{2}
$$

The area of the window (which is proportional to the amount of light admitted) is

$$
A=2 x y+\frac{1}{2} \pi x^{2}=P x-\left(\frac{\pi}{2}+2\right) x^{2}
$$

To maximize the quantity we take the derivative and find the critical points:

$$
\begin{gathered}
A^{\prime}=\left(P x-\left(\frac{\pi}{2}+2\right) x^{2}\right)^{\prime}=P-(\pi+4) x \\
A^{\prime}=0=>P-(\pi+4) x=0 \\
x=\frac{P}{\pi+4}
\end{gathered}
$$

Since

$$
A^{\prime \prime}=(P-(\pi+4) x)^{\prime}=-(\pi+4)<0
$$

A takes the maximum at $x=\frac{P}{\pi+4}$.
Then

$$
y=\frac{P-(2+\pi) \frac{P}{\pi+4}}{2}=\frac{P}{\pi+4}
$$

Hence, the window allowing maximal light in is the one with square base

$$
\frac{P}{\pi+4} \times \frac{P}{\pi+4}
$$

Answer: square.

Question

3. Find the dimension of the largest rectangular building that can be placed on a right triangular lot, facing one of the perpendicular sides.

Solution

Let x and y be the length and height of the building. Then area of lot is

$$
\begin{gathered}
\frac{1}{2} a b=x y+\frac{1}{2} x(b-y)+\frac{1}{2} y(a-x) \\
\frac{1}{2} a b=\frac{1}{2} a y+\frac{1}{2} b x \\
a b=a y+b x=>y=b-\frac{b}{a} x
\end{gathered}
$$

The area of the building is

$$
S=x y=x\left(b-\frac{b}{a} x\right)
$$

Minimizing the area of the poster
$S^{\prime}(x)=\left(b x-\frac{b}{a} x^{2}\right)^{\prime}=b-\frac{2 b}{a} x$;
$S^{\prime}(x)=0 \Rightarrow b-\frac{2 b}{a} x=0, x>0$;
$x=\frac{a}{2}$.
Since

$$
S^{\prime \prime}(x)=\left(b-\frac{2 b}{a} x\right)^{\prime}=-\frac{2 b}{a}<0
$$

$S(x)$ takes the maximum at $x=\frac{a}{2}$

$$
y=b-\frac{b a}{2 a}=\frac{b}{2} .
$$

Hence, the dimension of the largest rectangular building

$$
\frac{a}{2} \times \frac{b}{2}
$$

Answer: $\frac{a}{2}$ and $\frac{b}{2}$.

