Answer on Question \#64605 - Math - Calculus

Question

23. An open-topped cylindrical pot is to have volume $250 \mathrm{~cm}^{3}$. The material for the bottom of the pot costs 4 cents per cm^{2}; that for its curved side costs 2 cents per cm^{2}. What dimensions will minimize the total cost of this pot?

Solution

Let r be the radius of the pot and h be its height. Then the volume is given by

$$
V=\pi r^{2} h=>h=\frac{V}{\pi r^{2}} .
$$

The area of the bottom of the pot is

$$
A_{1}=\pi r^{2} .
$$

So it will cost $4 \pi r^{2}$ to make it.
The area of the side of the pot is

$$
A_{2}=2 \pi r h=2 \pi r \frac{V}{\pi r^{2}}=\frac{2 V}{r} .
$$

So it will cost $4 V / r$ to make it. The total cost is

$$
C(r)=4 \pi r^{2}+\frac{4 V}{r}=4 \pi r^{2}+\frac{1000}{r} .
$$

We want to minimize this cost. Find the derivative

$$
C^{\prime}(r)=8 \pi r-\frac{1000}{r^{2}}
$$

The critical points are the roots of the following equation:

$$
\begin{gathered}
C^{\prime}(r)=0=>8 \pi r-\frac{1000}{r^{2}}=0 \\
r^{3}=\frac{125}{\pi} \\
r=\frac{5}{\sqrt[3]{\pi}}(\mathrm{cm})
\end{gathered}
$$

Since the derivative changes sign at $r=5 / \sqrt[3]{\pi}$ from - to + , this is a point of local minimum. Since

$$
\lim _{r \rightarrow 0^{+}} C(r)=\infty, \lim _{r \rightarrow \infty} C(r)=\infty,
$$

the point $r=5 / \sqrt[3]{\pi}$ is also a point of global minimum, and so the optimal radius should be $r=5 / \sqrt[3]{\pi}(\mathrm{cm})$. The corresponding height is

$$
h=\frac{250 \cdot \sqrt[3]{\pi^{2}}}{\pi \cdot 25}=\frac{10}{\sqrt[3]{\pi}}(\mathrm{cm})
$$

Answer: $r=\frac{5}{\sqrt[3]{\pi}} \mathrm{cm}, h=\frac{10}{\sqrt[3]{\pi}} \mathrm{cm}$.

Question

24. A storage container is to be made in the form of a right circular cylinder and have a volume of $28 \pi \mathrm{~m}^{3}$. Material for the top of the container costs $\$ 5$ per square metre and material for the side and base costs $\$ 2$ per square metre. What dimensions will minimize the total cost of the container?

Solution

Let r be the radius of the container and h be its height. Then the volume is given by

$$
V=\pi r^{2} h=>h=\frac{V}{\pi r^{2}} .
$$

The area of the top of the container is

$$
A_{1}=\pi r^{2} .
$$

So it will cost $5 \pi r^{2}$ to make it.
The area of the bottom of the container is

$$
A_{2}=\pi r^{2} .
$$

So it will cost $2 \pi r^{2}$ to make it.
The area of the side of the container is

$$
A_{3}=2 \pi r h=2 \pi r \frac{V}{\pi r^{2}}=\frac{2 V}{r} .
$$

So it will cost $4 V / r$ to make it. The total cost is

$$
C(r)=5 \pi r^{2}+2 \pi r^{2}+\frac{4 V}{r}=7 \pi r^{2}+\frac{112 \pi}{r}
$$

We want to minimize this cost. Find the derivative

$$
C^{\prime}(r)=14 \pi r-\frac{112 \pi}{r^{2}}
$$

The critical points are the roots of the following equation:

$$
\begin{gathered}
C^{\prime}(r)=0=>14 \pi r-\frac{112 \pi}{r^{2}}=0 . \\
r^{3}=8 ; \\
r=2(m) .
\end{gathered}
$$

Since the derivative changes sign at $r=2$ from - to + , this is a point of local minimum. Since

$$
\lim _{r \rightarrow 0^{+}} C(r)=\infty, \lim _{r \rightarrow \infty} C(r)=\infty,
$$

the point $r=2$ is also a point of global minimum, and so the optimal radius should be $r=2 \mathrm{~m}$. The corresponding height is

$$
h=\frac{28 \pi}{\pi \cdot 2^{2}}=7(\mathrm{~m}) .
$$

Answer: $r=2 m, h=7 m$.

