Answer on Question \#64604 - Math - Calculus

Question

19. A rectangular box has a square base with edge length x of at least 1 unit. The total surface area of its six sides is 150 square units.
(a) Express the volume V of this box as a function of x .
(b) Find the domain of $\mathrm{V}(\mathrm{x})$.
(c) Find the dimensions of the box in part (a) with the greatest possible volume. What is this greatest possible volume?

Solution

(a) Let y be the height. The total surface area is

$$
A=2 x^{2}+4 x y=150
$$

hence

$$
y=\frac{150-2 x^{2}}{4 x}=\frac{75-x^{2}}{2 x}
$$

The volume is

$$
V=x^{2} y=x^{2} \frac{75-x^{2}}{2 x}=\frac{x}{2}\left(75-x^{2}\right)
$$

(b) Given $x \geq 1$. Besides

$$
\begin{gathered}
y>0 \rightarrow \frac{75-x^{2}}{2 x}>0 \\
75>x^{2} \\
x<\sqrt{75}=5 \sqrt{3}
\end{gathered}
$$

Thus, the domain of $V(x)$ is $[1 ; 5 \sqrt{3})$.
(c)

$$
\frac{d V}{d x}=\frac{d}{d x}\left(\frac{75 x}{2}-\frac{x^{3}}{2}\right)=\frac{75}{2}-\frac{3 x^{2}}{2}=0
$$

The dimensions of the box are

$$
\begin{aligned}
& 25=x^{2} \rightarrow x=5 \\
& y=\frac{75-25}{2 \cdot 5}=5
\end{aligned}
$$

The greatest possible volume is

$$
V(5)=\frac{5}{2}(75-25)=125
$$

Answer: (a) $\frac{x}{2}\left(75-x^{2}\right)$; (b) $[1 ; 5 \sqrt{3})$; (c) 5 units, 5 units; 125 units 3.

Question

20. An open-top box is to have a square base and a volume of 13500 cm 3 . Find the dimensions of the box that minimize the amount of material used.

Solution

The area of a square base is

$$
x^{2}
$$

The volume is

$$
\begin{gathered}
V=x^{2} h=13500 \\
h=\frac{13500}{x^{2}} .
\end{gathered}
$$

The amount of material used is proportional to the surface area:

$$
\begin{aligned}
A=x^{2}+4 x h & =x^{2}+4 x \frac{13500}{x^{2}}=x^{2}+\frac{54000}{x} . \\
\frac{d A}{d x} & =2 x-\frac{54000}{x^{2}}=0 \\
x^{3} & =\frac{54000}{2}=27000 .
\end{aligned}
$$

The length and width are

$$
x=\sqrt[3]{27000}=30 \mathrm{~cm}
$$

The height is

$$
h=\frac{13500}{30^{2}}=15 \mathrm{~cm} .
$$

Answer: $30 \mathrm{~cm}, 30 \mathrm{~cm}, 15 \mathrm{~cm}$.

Question

21. Find the dimension of the right circular cylinder of maximum volume that can be inscribed in a right circular cone of radius R and height H.

Solution

$$
\begin{gathered}
\frac{H}{R}=\frac{h}{R-r} \\
h=\frac{H(R-r)}{R} .
\end{gathered}
$$

The volume of cylinder is

$$
\begin{gathered}
V=\pi r^{2} h=\pi r^{2} \frac{H(R-r)}{R}=\frac{\pi H}{R}\left(r^{2} R-r^{3}\right) . \\
\frac{d V}{d r}=\frac{\pi H}{R}\left(2 r R-3 r^{2}\right)=0 \\
2 R=3 r
\end{gathered}
$$

The radius of cylinder is

$$
r=\frac{2}{3} R .
$$

The height of cylinder is

$$
h=\frac{H\left(R-\frac{2}{3} R\right)}{R}=\frac{1}{3} H .
$$

Answer: $r=\frac{2}{3} R, h=\frac{1}{3} H$.

Question

22. A hollow plastic cylinder with a circular base and open top is to be made and 10 m 2 plastic is available. Find the dimensions of the cylinder that give the maximum volume and find the value of the maximum volume.

Solution

The area of a base is

$$
\pi r^{2}
$$

The volume is

$$
V=\pi r^{2} h
$$

The amount of material used is proportional to the surface area:

$$
\begin{gathered}
A=\pi r^{2}+2 \pi r h=10 \\
h=\frac{10-\pi r^{2}}{2 \pi r}
\end{gathered}
$$

So,

$$
\begin{gathered}
V=\pi r^{2}\left(\frac{10-\pi r^{2}}{2 \pi r}\right)=\frac{r}{2}\left(10-\pi r^{2}\right) \\
\frac{d V}{d r}=\frac{10}{2}-\frac{3 \pi r^{2}}{2}=0 \\
3 \pi r^{2}=10
\end{gathered}
$$

The radius is

$$
r=\sqrt{\frac{10}{3 \pi}} m
$$

The height is

$$
h=\frac{10-\pi \frac{10}{3 \pi}}{2 \pi \sqrt{\frac{10}{3 \pi}}}=\sqrt{\frac{10}{3 \pi}} m
$$

The value of the maximum volume is

$$
V_{\max }=\frac{r}{2}\left(10-\pi r^{2}\right)=\frac{\sqrt{\frac{10}{3 \pi}}}{2}\left(10-\pi \cdot \frac{10}{3 \pi}\right)=\frac{10}{3} \sqrt{\frac{10}{3 \pi}} m^{3}
$$

Answer: $r=\sqrt{\frac{10}{3 \pi}} m ., h=\sqrt{\frac{10}{3 \pi}} m, V_{\max }=\frac{10}{3} \sqrt{\frac{10}{3 \pi}} m^{3}$.

