Answer on Question \#64603 - Math - Calculus

Question

16. The top and bottom margins of a poster are each 6 cm , and the side margins are each 4 cm . If the area of the printed material on the poster (that is, the area between the margins) is fixed at 384 cm 2 , find the dimensions of the poster with the smallest total area.

Solution

Let x and y be the length and width of the poster (measured in cm). Then the printed area is

$$
\text { Area }=(x-2 \cdot 4)(y-2 \cdot 6)=384 \Rightarrow y=12+\frac{384}{x-8} .
$$

The area of the poster is

$$
S=x y=x\left(12+\frac{384}{x-8}\right)
$$

Minimizing the area of the poster
$S^{\prime}(x)=\left(12 x+\frac{384 x}{x-8}\right)^{\prime}=12+384 \frac{x-8-x}{(x-8)^{2}}=12-\frac{3072}{(x-8)^{2}}$;
$S^{\prime}(x)=0=>12-\frac{3072}{(x-8)^{2}}=0, x>8 ;$
$(x-8)^{2}=256, x=16+8=24$.
Since

$$
\lim _{x \rightarrow 8^{+}} S(x)=\lim _{x \rightarrow \infty} S(x)=\infty,
$$

$S(x)$ takes the minimum at $x=24$ on $(8, \infty)$.
So the smallest poster has dimension $24 \mathrm{~cm} \times 36 \mathrm{~cm}$.
Answer: $24 \mathrm{~cm} \times 36 \mathrm{~cm}$.

Question

17. Each rectangular page of a book must contain 30 cm 2 of printed text, and each page must have 2 cm margins at top and bottom, and 1 cm margin at each side. What is the minimum possible area of such a page?

Solution

Let x and y be the length and width of the page (measured in cm). Then area of the printed text is

$$
\text { Area }=(x-2 \cdot 2)(y-2 \cdot 1)=30 \Rightarrow y=2+\frac{30}{x-4} .
$$

The area of the page is

$$
S=x y=x\left(2+\frac{30}{x-4}\right)
$$

Minimizing the area of the poster
$S^{\prime}(x)=\left(2 x+\frac{30 x}{x-4}\right)^{\prime}=2+30 \frac{x-4-x}{(x-4)^{2}}=2-\frac{120}{(x-4)^{2}} ;$
$S^{\prime}(x)=0=>2-\frac{120}{(x-4)^{2}}=0, x>4$;
$(x-4)^{2}=60, x=2 \sqrt{15}+4$.
Since

$$
\begin{gathered}
S^{\prime \prime}(x)=\left(2-\frac{120}{(x-4)^{2}}\right)^{\prime}=\frac{240}{(x-4)^{3}} \\
S^{\prime \prime}(2 \sqrt{15}+4)=\frac{240}{(2 \sqrt{15}+4-4)^{3}}=\frac{2}{\sqrt{15}}>0
\end{gathered}
$$

$S(x)$ takes the minimum at $x=2 \sqrt{15}+4$ on $(4, \infty)$.

$$
y=2+\frac{30}{2 \sqrt{15}+4-4}=2+\sqrt{15}(\mathrm{~cm}) .
$$

So the minimum possible area of such a page is

$$
(2 \sqrt{15}+4)(2+\sqrt{15})=36+8 \sqrt{15}\left(\mathrm{~cm}^{2}\right) .
$$

Answer: $36+8 \sqrt{15} \mathrm{~cm}^{2}$.

Question

18. Maya is 2 km offshore in a boat and wishes to reach a coastal village which is 6 km down a straight shoreline from the point on the shore nearest to the boat. She can row at $2 \mathrm{~km} / \mathrm{hr}$ and run at $5 \mathrm{~km} / \mathrm{hr}$. Where should she land her boat to reach the village in the least amount of time?

Solution

Let x be the distance from the point on the shoreline nearest Maya's boat to the point where she lands her boat. Then she needs to row d miles at 2 mph and walk ($6-x$) miles at 5 mph .
Using the Pythagorean Theorem

$$
d^{2}=x^{2}+2^{2}
$$

The total amount of time to reach the village is

$$
f(x)=\frac{\sqrt{x^{2}+4}}{2}+\frac{6-x}{5}, 0 \leq x \leq 6 .
$$

Minimizing the total amount of time

$$
\begin{gathered}
f^{\prime}(x)=\left(\frac{\sqrt{x^{2}+4}}{2}+\frac{6-x}{5}\right)^{\prime}=\frac{x}{2 \sqrt{x^{2}+4}}-\frac{1}{5} \\
f^{\prime}(x)=0=>\frac{x}{2 \sqrt{x^{2}+4}}-\frac{1}{5}=0 \\
5 x=2 \sqrt{x^{2}+4} \\
25 x^{2}=4 x^{2}+16 \\
x^{2}=\frac{16}{21} \\
x=\frac{4}{\sqrt{21}}, x \neq-\frac{4}{\sqrt{21}} .
\end{gathered}
$$

Checking the endpoints and critical point, we have

$$
\begin{gathered}
f(0)=\frac{2}{2}+\frac{6}{5}=\frac{11}{5}=2.2(\text { hours }), f(6)=\frac{\sqrt{6^{2}+4}}{2}+0=\sqrt{10} \approx 3.16(\text { hours }) \\
f\left(\frac{4}{\sqrt{21}}\right)=\frac{\sqrt{\frac{16}{21}+4}}{2}+\frac{6-\frac{4}{\sqrt{21}}}{5}=\frac{\sqrt{21}}{5}+\frac{6}{5} \approx 2.12(\text { hours })
\end{gathered}
$$

Minimum of $f(x)$ is attained at $x=\frac{4}{\sqrt{21}}$.
Answer: Maya should land her boat $\frac{4}{\sqrt{21}} \approx 0.87$ miles down the shoreline from the point nearest her boat.

