Answer on Question \#64601 - Math - Calculus
 Question

Q1. The height of a rectangular box is increasing at a rate of 2 meters per second while the volume is decreasing at a rate of 5 cubic meters per second. If the base of the box is a square, at what rate is one of the sides of the base decreasing, at the moment when the base area is 64 square meters and the height is 8 meters?

Solution

The volume of the box with the square base is

$$
V=h \cdot b^{2}
$$

The rate of change of volume equal to its time derivative

$$
\frac{d V}{d t}=V^{\prime}
$$

Find the rate of changing of the box volume:

$$
V^{\prime}=\left(h \cdot b^{2}\right)^{\prime}=h^{\prime} \cdot b^{2}+2 h b b^{\prime}
$$

(here we used product rule

$$
(f(x) \cdot g(x))=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

and chain rule

$$
\left.(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)\right)
$$

Find the rate of changing of the base side b^{\prime}

$$
V^{\prime}=h^{\prime} \cdot b^{2}+2 h b b^{\prime} \Rightarrow 2 h b b^{\prime}=V^{\prime}-h^{\prime} \cdot b^{2}=>b^{\prime}=\left(V^{\prime}-h^{\prime} \cdot b^{2}\right) / 2 h b
$$

where $h^{\prime}=2 \mathrm{~m} /$ sis the rate of the box height increasing, $V^{\prime}=-5 \mathrm{~m}^{3} / \mathrm{s}$ is the rate of the box volume decreasing (minus sign indicates a decrease in volume)
$b=\sqrt{64}=8$. Plug given values into

$$
b^{\prime}=\left(V^{\prime}-h^{\prime} \cdot b^{2}\right) / 2 h b
$$

we get

$$
b^{\prime}=\frac{-5-2 \cdot 64}{2 \cdot 8 \cdot 8}=-\frac{5+128}{128} \approx-1.04 \mathrm{~m} / \mathrm{s}
$$

(minus sign indicates a decrease in base side).
Answer: rate of the base side decreasing is $b^{\prime} \approx-1.04 m / s$.

Question

Q2. Sand is pouring out of a tube at 1 cubic meter per second. It forms a pile which has the shape of a cone. The height of the cone is equal to the radius of the circle at its base. How fast is the sandpile rising when it is 2 meters high?

Solution

The volume of the cone is equal to

$$
V=\frac{1}{3} \pi R^{2} h
$$

where R is the radius of the circle at its base, h is the height of the cone. Since by assumption of task the height of the cone is equal to the radius of the circle, i.e. $R=h$, then

$$
V=\frac{1}{3} \pi h^{3}=\frac{1}{3} \pi R^{3}
$$

The rate of change of volume equal to its time derivative

$$
\frac{d V}{d t}=V^{\prime}
$$

Find the rate of change of the volume of the sandpile:

$$
V^{\prime}=\left(\frac{1}{3} \pi h^{3}\right)^{\prime}=\frac{1}{3} \pi \cdot 3 h^{2} h^{\prime}=\pi h^{2} h^{\prime}=\pi h^{2} R^{\prime}
$$

Then the rate of increase in the height and radius of the cone is

$$
h^{\prime}=R^{\prime}=V^{\prime} / \pi h^{2}
$$

Plug given values ($V^{\prime}=1 \mathrm{~m}^{3} / \mathrm{sec}$ and $h=2 \mathrm{~m}$) into last formula, we get the rate of increase in the height and radius of the cone

$$
h^{\prime}=R^{\prime}=\frac{1}{4 \pi} \approx 0,08 \mathrm{~m} / \mathrm{sec}=8 \mathrm{~cm} / \mathrm{sec}
$$

Answer: the rate of increase of height and radius of the sandpile when it is 2 meters high, is $h^{\prime}=R^{\prime}=0,08 \mathrm{~m} / \mathrm{sec}=8 \mathrm{~cm} / \mathrm{sec}$.

Question

Q3. A water tank is in the shape of a cone with vertical axis and vertex downward. The tank has radius 3 m and is 5 m high. At first the tank is full of water, but at time $t=0$ (in seconds), a small hole at the vertex is opened and the water begins to drain. When the height of water in the tank has dropped to 3 m , the water is flowing out at $2 \mathrm{~m} 3 / \mathrm{s}$. At what rate, in meters per second, is the water level dropping then?

Solution

Volume of a cone is

$$
V=\frac{1}{3} \pi R^{2} h
$$

where R is the radius of the cone, h is the height. We know height of the cone and radius of the cone at the top so we can find the radius for the any height using a proportion of similar triangles. The ratio of the height of the tank to the radius:

$$
\frac{R}{h}=\frac{3}{5}
$$

When the height of the water is h meters the radius is:

$$
R=\frac{3}{5} h
$$

Plug this into the $V=\frac{1}{3} \pi R^{2} h$, we get

$$
V=\frac{1}{3} \pi\left(\frac{3}{5} h\right)^{2} h=\frac{3 \pi}{25} h^{3}
$$

The rate of change of volume equal to its time derivative $\frac{d V}{d t}=V^{\prime}$
Take derivative of each side

$$
V^{\prime}=\frac{9 \pi}{25} h^{2} h^{\prime}
$$

Plug numbers:

$$
V^{\prime}=\frac{9 \pi}{25} 3^{2} h^{\prime}=2 \mathrm{~m}^{3} / \mathrm{sec}
$$

Then

$$
h^{\prime}=\frac{2 \cdot 25}{81 \pi} \approx 0.2 \mathrm{~m} / \mathrm{sec}
$$

Answer: the rate of decreasing water level is $h^{\prime} \approx 0.2 \mathrm{~m} / \mathrm{sec}$.

