Answer on Question \#64599 - Math - Calculus

Question

4. An airplane flying horizontally at an altitude of $y=3 \mathrm{~km}$ and at a speed of $480 \mathrm{~km} / \mathrm{h}$ passes directly above an observer on the ground. How fast is the distance D from the observer to the airplane increasing 30 seconds later?

Solution

D is the distance from the airplane to the observer and x is the (horizontal) distance traveled by the airplane from the moment it passed over the observer.
We know that $\mathrm{v}=d x / d t=480 \mathrm{~km} / \mathrm{h}$.
We want to know $d D / d t 30$ seconds after the plane flew over the observer.

$$
t=30 \mathrm{sec}=30 \cdot \frac{1}{3600} \text { hours }=\frac{1}{120} \text { hours }
$$

Applying the Pythagorean Theorem to a right triangle

$$
D^{2}=x^{2}+y^{2}, D^{2}=x^{2}+3^{2}
$$

Taking derivatives with respect to time t on both sides we get

$$
2 D \frac{d D}{d t}=2 x \frac{d x}{d t},
$$

so that

$$
\frac{d D}{d t}=\frac{x}{D} \cdot \frac{d x}{d t}
$$

We have that

$$
\begin{gathered}
t=30 \mathrm{sec}=\frac{1}{120} \text { hours, } \frac{d x}{d t}=\mathrm{v}=480 \frac{\mathrm{~km}}{\mathrm{~h}}, x=\mathrm{vt}=480 \cdot \frac{1}{120}=4(\mathrm{~km}), \\
D^{2}=4^{2}+3^{2}=25\left(\mathrm{~km}^{2}\right), D=5 \mathrm{~km} .
\end{gathered}
$$

Then

$$
\frac{d D}{d t}=\frac{4}{5} \cdot 480=384\left(\frac{\mathrm{~km}}{\mathrm{~h}}\right) .
$$

Answer: $384 \frac{\mathrm{~km}}{h}$.

Question

5. A kite is rising vertically at a constant speed of $2 \mathrm{~m} / \mathrm{s}$ from a location at ground level which is 8 m away from the person handling the string of the kite.
(a) Let z be the distance from the kite to the person. Find the rate of change
of z with respect to time t when $\mathrm{z}=10$.
(b) Let x be the angle the string makes with the horizontal. Find the rate of change of x with respect to time t when the kite is $y=6 \mathrm{~m}$ above ground.

Solution

(a) Applying the Pythagorean theorem to a right triangle

$$
z^{2}=8^{2}+y^{2}
$$

We know that

$$
\mathrm{v}_{y}=\frac{d y}{d t}=2 \frac{m}{s}, y=\mathrm{v}_{y} t
$$

Then

$$
z^{2}=64+\left(\mathrm{v}_{y} t\right)^{2}
$$

Taking derivatives with respect to time t on both sides we get

$$
2 z \frac{d z}{d t}=2 \mathrm{v}_{y}^{2} t
$$

So that

$$
\frac{d z}{d t}=\frac{1}{z} \mathrm{v}_{y}^{2} t=\frac{y}{z} \mathrm{v}_{y} .
$$

We have that

$$
z=10 m, 10^{2}=64+y^{2}, y=6 m
$$

Therefore

$$
\frac{d z}{d t}=\frac{6}{10} \cdot 2=1.2\left(\frac{m}{s}\right)
$$

(b) Using the definition

$$
\tan x=\frac{y}{8}
$$

Taking derivatives with respect to time t on both sides we get

$$
\frac{1}{\cos ^{2} x} \cdot \frac{d x}{d t}=\frac{1}{8} \cdot \frac{d y}{d t}
$$

So that

$$
\frac{d x}{d t}=\frac{1}{8} \cdot \cos ^{2} x \cdot \mathrm{v}_{y}
$$

We have that

$$
y=6 m, \tan x=\frac{6}{8}=\frac{3}{4}, 1+\tan ^{2} x=1+\left(\frac{3}{4}\right)^{2}=\frac{25}{16}=\frac{1}{\cos ^{2} x}, \cos ^{2} x=\frac{16}{25}
$$

Therefore

$$
\frac{d x}{d t}=\frac{1}{8} \cdot \frac{16}{25} \cdot 2=\frac{4}{25}=0.16 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Answer: (a) $1.2 \frac{\mathrm{~m}}{\mathrm{~s}}$; (b) $0.16 \frac{\mathrm{rad}}{\mathrm{s}}$.

Question

6. A balloon is rising at a constant speed $4 \mathrm{~m} / \mathrm{sec}$. A boy is cycling along a straight road at a speed of $8 \mathrm{~m} / \mathrm{sec}$. When he passes under the balloon, it is 36 metres above him. How fast is the distance between the boy and balloon increasing 3 seconds later?

Solution

D is the distance between the boy and balloon, x is the (horizontal) distance traveled by the boy from the moment it passed under the balloon and y is the altitude of the balloon.
Applying the Pythagorean theorem to a right triangle

$$
D^{2}=x^{2}+y^{2}
$$

We know that

$$
\mathrm{v}_{x}=\frac{d x}{d t}=8 \frac{m}{s e c}, \mathrm{v}_{y}=\frac{d y}{d t}=4 \frac{m}{s e c}, x=\mathrm{v}_{x} t, y=y_{0}+\mathrm{v}_{y} t, y_{0}=36 m
$$

Then

$$
D^{2}=\left(\mathrm{v}_{x} t\right)^{2}+\left(y_{0}+\mathrm{v}_{y} t\right)^{2}
$$

Taking derivatives (with respect to time, t) on both sides we get

$$
2 D \frac{d D}{d t}=2 \mathrm{v}_{x}^{2} t+2 \mathrm{v}_{y}\left(y_{0}+\mathrm{v}_{y} t\right)
$$

so that

$$
\frac{d D}{d t}=\frac{1}{D} \cdot\left(\mathrm{v}_{x}^{2} t+\mathrm{v}_{y}\left(y_{0}+\mathrm{v}_{y} t\right)\right)
$$

We have that

$$
t=3 \mathrm{sec}, D^{2}=(8 \cdot 3)^{2}+(36+4 \cdot 3)^{2}=2880\left(m^{2}\right), D=24 \sqrt{5} \mathrm{~m}
$$

Therefore

$$
\frac{d D}{d t}=\frac{1}{24 \sqrt{5}}\left(8^{2} \cdot 3+4(36+4 \cdot 3)\right)=\frac{16}{\sqrt{5}}=\frac{16 \sqrt{5}}{5}\left(\frac{m}{\sec }\right)
$$

Answer: $\frac{16 \sqrt{5}}{5} \frac{\mathrm{~m}}{\mathrm{sec}}$.

