Answer on Question \#64598 - Math - Calculus

Question

1. A ladder 15 ft long rests against a vertical wall. Its top slides down the wall while its bottom moves away along the level ground at a speed of $2 \mathrm{ft} / \mathrm{s}$. How fast is the angle between the top of the ladder and the wall changing when the angle is $\pi / 3$ radians?

Solution

1. Ladder and wall can be regarded as sides of a right triangle.

At $t=0, O B=0$ and $O C \equiv B C=15 \mathrm{ft} . O B=2 t[f t]$

$$
\begin{gathered}
\sin \theta=\frac{O B}{B C} \rightarrow \theta=\operatorname{asin}\left(\frac{O B}{B C}\right) \\
\theta=\operatorname{asin}\left(\frac{2 t}{15}\right) \rightarrow d \theta=\frac{2}{\sqrt{225-4 t^{2}}} d t \rightarrow \frac{d \theta}{d t}=\frac{2}{\sqrt{225-4 t^{2}}}
\end{gathered}
$$

Determine t, when $\theta=\frac{\pi}{3}$:

$$
\sin \left(\frac{\pi}{3}\right)=\frac{2 t_{1}}{15} \rightarrow \frac{\sqrt{3}}{2}=\frac{2 t_{1}}{15} \rightarrow t_{1}=\frac{15 \sqrt{3}}{4}
$$

Then,

$$
\begin{gathered}
\left.\frac{d \theta}{d t}\right|_{t=t_{1}}=\frac{2}{\sqrt{225-4 t_{1}^{2}}}=\frac{2}{\sqrt{225-4 \cdot\left(\frac{15 \sqrt{3}}{4}\right)^{2}}} \\
\left.\frac{d \theta}{d t}\right|_{t=t_{1}}=\frac{2}{\sqrt{225-225 \cdot \frac{3}{4}}}=\frac{2}{\sqrt{\frac{225}{4}}}=\frac{4}{\sqrt{225}}=\frac{4}{15}\left[\frac{\mathrm{rad}}{\mathrm{~s}}\right]
\end{gathered}
$$

Answer: $\frac{4}{15}\left[\frac{\mathrm{rad}}{\mathrm{s}}\right]$,

Question

2. A ladder 12 meters long leans against a wall. The foot of the ladder is pulled away from the wall at the rate $12 \mathrm{~m} / \mathrm{min}$. At what rate is the top of the ladder falling when the foot of the ladder is 4 meters from the wall?

Solution

2. Similar to previous one.

At $t=0, O B=0$ and $O C=B C=12 \mathrm{~m} ; O B=12 t(\mathrm{~min})[\mathrm{m}]$
By the Pythagorean theorem, $O C=\sqrt{B C^{2}-O B^{2}}$.
Determine time t_{1} when the foot of the ladder is 4 meters from the wall: $t_{1}=\frac{4}{12}=\frac{1}{3}$
Ladder top is falling at rate:

$$
\frac{d(O C)}{d t}=\frac{1}{2} \frac{1}{\sqrt{B C^{2}-O B^{2}}}(-2 \cdot O B) \frac{d(O B)}{d t}=-12 t \cdot 12 \cdot \frac{1}{\sqrt{12^{2}-12^{2} t^{2}}}=-\frac{12 t}{\sqrt{1-t^{2}}}
$$

Plug in time t_{1} :

$$
\frac{d(O C)}{d t}_{t=t_{1}}=-\frac{12 t_{1}}{\sqrt{1-t_{1}^{2}}}=-\frac{12}{\sqrt{\frac{1}{t_{1}^{2}}-1}}=-\frac{12}{\sqrt{9-1}}=-\frac{12}{2 \sqrt{2}}=-3 \sqrt{2}\left[\frac{m}{s}\right]
$$

"minus" sign represents falling.
Answer: $-3 \sqrt{2}\left[\frac{m}{s}\right]$,

Question

3. A rocket R is launched vertically and its tracked from a radar station S which is 4 miles away from the launch site at the same height above sea level. At a certain instant after launch, R is 5 miles away from S and the distance from R to S is increasing at a rate of 3600 miles per hour. Compute the vertical speed v of the rocket at this instant.

Solution

3.

By the Pythagorean theorem,

$$
R S^{2}=O R^{2}+O S^{2} \rightarrow O R=\sqrt{R S^{2}-O S^{2}}
$$

Let us find projection of speed v on $R S$:

$$
v_{R S}=v \cos (\angle O R S)=v \frac{O R}{R S}=v \frac{\sqrt{R S^{2}-O S^{2}}}{R S}
$$

Then for the given instant we have
$3600=v \frac{\sqrt{5^{2}-4^{2}}}{5} \rightarrow 3600=v \frac{3}{5} \rightarrow v=6000\left[\frac{\text { miles }}{\text { hour }}\right]$.
Answer: $6000\left[\frac{\text { miles }}{\text { hour }}\right]$.

