Answer on Question \#64597- Math - Calculus

Question

The expression $I=6 t^{\wedge} 3+2 t^{\wedge} 2+5 t-2$ shows the relationship between current and time in seconds. How would you find the electric charge passing between $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=5 \mathrm{~s}$.

Solution

$$
\begin{gathered}
Q=\int_{2}^{5} I(t) d t=\int_{2}^{5}\left(6 t^{3}+2 t^{2}+5 t-2\right) d t=\left.\left(\frac{6 t^{4}}{4}+\frac{2 t^{3}}{3}+\frac{5 t^{2}}{2}-2 t\right)\right|_{2} ^{5}= \\
\quad=\frac{6}{4}\left(5^{4}-2^{4}\right)+\frac{2}{3}\left(5^{3}-2^{3}\right)+\frac{5}{2}\left(5^{2}-2^{2}\right)-2(5-2)= \\
\quad=\frac{3}{2}(625-16)+\frac{2}{3}(125-8)+\frac{5}{2}(25-4)-2 \cdot 3= \\
=\frac{3}{2} \cdot 609+\frac{2}{3} \cdot 117+\frac{5}{2} \cdot 21-6=\frac{3 \cdot 609+5 \cdot 21}{2}+2 \cdot 39-6= \\
=\frac{1827+105}{2}+78-6=\frac{1932}{2}+78-6=966+78-6=1038 .
\end{gathered}
$$

Answer: 1038.

