Answer on Question \#64582 - Math - Differential Equations

Question

Find an equation of orthogonal trajectory of the curve of each of the following: i)

$$
x=C y^{2}
$$

Solution

Differentiating $x=C y^{2}$ with respect to x

$$
1=2 C y \frac{d y}{d x^{\prime}}
$$

where $\frac{d y}{d x}=y^{\prime}$.
Substituting $y^{\prime} \rightarrow\left(-1 / y^{\prime}\right)$

$$
\begin{gathered}
1=2 C y \cdot \frac{1}{-\frac{d y}{d x}} \\
\frac{d y}{d x}=-2 C y
\end{gathered}
$$

Integrating both sides

$$
\begin{gathered}
-2 C \int d x=\int \frac{d y}{y} \\
-2 C x+k_{1}=\ln |y| \\
-2 C x+\ln k_{2}=\ln |y|, \\
-2 C x=\ln \frac{|y|}{k_{2}}, \\
e^{-2 C x}=\frac{|y|}{k_{2}}, \\
y=k e^{-2 C x} .
\end{gathered}
$$

Answer: $y=k e^{-2 C x}$.

Question

Find an equation of orthogonal trajectory of the curve of each of the following:
ii)

$$
x^{2}+y^{2}=C x
$$

Solution

Differentiating $x^{2}+y^{2}=C x$ with respect to x :

Substituting $y^{\prime} \rightarrow\left(-1 / y^{\prime}\right)$

$$
2 x+2 y \frac{d y}{d x}=C
$$

$$
\begin{gathered}
2 x-2 y \frac{d x}{d y}=C \\
2 x-C=2 y \frac{d x}{d y^{\prime}} \\
d y(2 x-C)=2 y d x
\end{gathered}
$$

Integrating both sides

$$
\begin{gathered}
\int \frac{d y}{2 y}=\int \frac{d x}{2 x-C} \\
\frac{1}{2} \ln |2 y|=\frac{1}{2} \ln |(2 x-C)| \\
y=x+k \text { or } y=-x+k .
\end{gathered}
$$

Answer: $y=x+k ; y=-x+k$.

Question

Find an equation of orthogonal trajectory of the curve of each of the following:
iii)

$$
y=e^{C x}
$$

Solution

Differentiating $y=e^{C x}$ with respect to x

$$
\frac{d y}{d x}=C e^{C x}
$$

Substituting $y^{\prime} \rightarrow\left(-1 / y^{\prime}\right)$

$$
\begin{gathered}
\frac{-1}{\frac{d y}{d x}}=C e^{C x} \\
-\frac{d x}{d y}=C e^{C x} \\
-e^{-C x} d x=C d y .
\end{gathered}
$$

Integrating both sides

$$
\begin{gathered}
-\int e^{-C x} d x=C \int d y \\
\frac{1}{C} e^{-C x}+k_{1}=C y \\
e^{-C x}+k_{2}=C^{2} y \\
y=\frac{e^{-c x}}{c^{2}}+k
\end{gathered}
$$

Answer: $y=\frac{e^{-C x}}{C^{2}}+k$.

Question

Find an equation of orthogonal trajectory of the curve of each of the following:
iv)

$$
x y=C
$$

Solution

Differentiating $x y=C$ with respect to x

$$
y+x \frac{d y}{d x}=0
$$

Substitute $y^{\prime} \rightarrow\left(-1 / y^{\prime}\right)$

$$
\begin{gathered}
y+x \cdot \frac{-1}{\frac{-1 y}{d x}}=0 \\
y-x \frac{d x}{d y}=0 \\
x d x=y d y
\end{gathered}
$$

Integrating both sides

$$
\begin{gathered}
\int y d y=\int x d x \\
\frac{y^{2}}{2}=\frac{x^{2}}{2}+C_{1} \\
y^{2}-x^{2}=k
\end{gathered}
$$

Answer: $y^{2}-x^{2}=k$.

Question

Find an equation of orthogonal trajectory of the curve of each of the following: v)

$$
y^{2}=x^{2}+C x
$$

Solution

Differentiating $y^{2}=x^{2}+C x$ with respect to x

$$
2 y \frac{d y}{d x}=2 x+C
$$

Substitute $y^{\prime} \rightarrow\left(-1 / y^{\prime}\right)$

$$
\begin{gathered}
2 y \frac{-1}{\frac{d y}{d x}}=2 x+C \\
-2 y \frac{d x}{d y}=2 x+C \\
-2 \frac{d x}{2 x+C}=\frac{d y}{y}
\end{gathered}
$$

Integrating both sides

$$
\begin{gathered}
-2 \int \frac{d x}{2 x+C}=\int \frac{d y}{y} \\
-\ln |2 x+C|+\ln k_{1}=\ln |y| \\
\ln \frac{k_{1}}{|2 x+C|}=\ln |y| \\
y=\frac{k}{2 x+C} .
\end{gathered}
$$

Answer: $y=\frac{k}{2 x+c}$.

