Answer on Question \#64529 - Math - Real Analysis

Question

Let $y_{n}=\sqrt{n+1}-\sqrt{n}$ for $n \in \mathbb{N}$. Show that y_{n} and $\sqrt{n} \cdot y_{n}$ converge. Find their limits.

Solution

$y_{n}=\sqrt{n+1}-\sqrt{n}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}, n \in \mathbb{N}$.
Obviously $\frac{1}{\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$ because for all $\varepsilon>0 \exists N=N(\varepsilon): \forall n>N(\varepsilon) \frac{1}{\sqrt{n}}<\varepsilon$ (for example $N(\varepsilon)=\left[\frac{1}{\varepsilon^{2}}\right]+1$ where $\left[\frac{1}{\varepsilon^{2}}\right]$ denotes the integer part of $\left.\frac{1}{\varepsilon^{2}}\right)$.

So we have

$$
0<\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}
$$

Using squeeze theorem we obtain that

$$
\frac{1}{\sqrt{n+1}+\sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$.
Next,

$$
\sqrt{n} \cdot y_{n}=\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n}}{\sqrt{n\left(1+\frac{1}{n}\right)}+\sqrt{n}}=\frac{\sqrt{n}}{\sqrt{n}\left(\sqrt{1+\frac{1}{n}}+1\right)}=\frac{1}{\sqrt{1+\frac{1}{n}+1}} .
$$

Obviously $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ because for all $\varepsilon>0 \exists N=N(\varepsilon): \forall n>N(\varepsilon) \frac{1}{n}<\varepsilon$ (for example, $N(\varepsilon)=\left[\frac{1}{\varepsilon}\right]+1$, where $\left[\frac{1}{\varepsilon}\right]$ denotes the integer part of $\frac{1}{\varepsilon}$).

Then

$$
\frac{1}{\sqrt{1+\frac{1}{n}}+1} \rightarrow \frac{1}{\sqrt{1}+1}=\frac{1}{2} \text { as } n \rightarrow \infty .
$$

Thus $\lim _{n \rightarrow \infty} \sqrt{n} \cdot y_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{2}$.
Answer: $\lim _{n \rightarrow \infty} y_{n}=0 ; \lim _{n \rightarrow \infty} \sqrt{n} \cdot y_{n}=\frac{1}{2}$.

