Answer on Question \#64526 - Math - Real Analysis

Question

Find the limit of the following sequences:
(a) $\lim \left(2+\frac{1}{n^{2}}\right)$, (b) $\lim \frac{(-1)^{n}}{n+2}$,
(c) $\lim \frac{\sqrt{n}-1}{\sqrt{n}+1}$
(d) $\lim \frac{n+1}{n \sqrt{n}}$

Solution

(a) $\lim _{n \rightarrow \infty}\left(2+\frac{1}{n^{2}}\right)=\lim _{n \rightarrow \infty} 2+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=2+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}$.

So if $\varepsilon>0$ is given, then choosing $N>\frac{1}{\sqrt{\varepsilon}}$ we have $\frac{1}{n^{2}}<\varepsilon, n>N$.
Thus $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$ and therefore $\lim _{n \rightarrow \infty}\left(2+\frac{1}{n^{2}}\right)=2$.
(b) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n+2}$.

$$
-\frac{1}{n+2} \leq \frac{(-1)^{n}}{n+2} \leq \frac{1}{n+2}
$$

Since $\lim _{n \rightarrow \infty} \frac{-1}{n+2}=\lim _{n \rightarrow \infty} \frac{1}{n+2}=0$, by Squeeze Theorem, $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n+2}=0$.
(c) $\lim _{n \rightarrow \infty} \frac{\sqrt{n}-1}{\sqrt{n}+1}$.

$$
\left|\frac{\sqrt{n}-1}{\sqrt{n}+1}-1\right|=\left|\frac{\sqrt{n}-1-(\sqrt{n}+1)}{\sqrt{n}+1}\right|=\frac{2}{\sqrt{n}+1}
$$

If $\varepsilon>0$ is given, then choosing $N>1+\left(\frac{2}{\varepsilon}\right)^{2}$ we have $\left|\frac{\sqrt{n}-1}{\sqrt{n}+1}-1\right|<\varepsilon, n>N$.
Thus $\lim _{n \rightarrow \infty} \frac{\sqrt{n}-1}{\sqrt{n}+1}=1$.
(d) $\lim _{n \rightarrow \infty} \frac{n+1}{n \sqrt{n}}$.

$$
\frac{n+1}{n \sqrt{n}}=\frac{1}{\sqrt{n}}+\frac{1}{n \sqrt{n}}
$$

If $\varepsilon>0$ is given, then choosing $N>\frac{1}{\varepsilon^{2}}$ we have $\frac{1}{\sqrt{n}}<\varepsilon, n>N$.

Hence

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

It also true that

$$
\lim _{n \rightarrow \infty} \frac{1}{n \sqrt{n}}=0
$$

Thus,

$$
\lim _{n \rightarrow \infty} \frac{n+1}{n \sqrt{n}}=0
$$

Answer: (a) 2; (b) 0; (c) 1; (d) 0.

