Answer on Question #64526 – Math – Real Analysis

Question

Find the limit of the following sequences:

(a)
$$\lim \left(2 + \frac{1}{n^2}\right)$$
, (b) $\lim \frac{(-1)^n}{n+2}$,
(c) $\lim \frac{\sqrt{n-1}}{\sqrt{n+1}}$
(d) $\lim \frac{n+1}{n\sqrt{n}}$

Solution
(a)
$$\lim_{n \to \infty} \left(2 + \frac{1}{n^2}\right) = \lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{1}{n^2} = 2 + \lim_{n \to \infty} \frac{1}{n^2}.$$

So if $\varepsilon > 0$ is given, then choosing $N > \frac{1}{\sqrt{\varepsilon}}$ we have $\frac{1}{n^2} < \varepsilon$, $n > N$.
Thus $\lim_{n \to \infty} \frac{1}{n^2} = 0$ and therefore $\lim_{n \to \infty} \left(2 + \frac{1}{n^2}\right) = 2.$

(b)
$$\lim_{n \to \infty} \frac{(-1)^n}{n+2}$$
.

$$-\frac{1}{n+2} \le \frac{(-1)^n}{n+2} \le \frac{1}{n+2}.$$

Since $\lim_{n \to \infty} \frac{-1}{n+2} = \lim_{n \to \infty} \frac{1}{n+2} = 0$, by Squeeze Theorem, $\lim_{n \to \infty} \frac{(-1)^n}{n+2} = 0.$

(c)
$$\lim_{n \to \infty} \frac{\sqrt{n}-1}{\sqrt{n}+1}$$
$$\left|\frac{\sqrt{n}-1}{\sqrt{n}+1} - 1\right| = \left|\frac{\sqrt{n}-1 - (\sqrt{n}+1)}{\sqrt{n}+1}\right| = \frac{2}{\sqrt{n}+1}$$
If $\varepsilon > 0$ is given, then choosing $N > 1 + \left(\frac{2}{\varepsilon}\right)^2$ we have $\left|\frac{\sqrt{n}-1}{\sqrt{n}+1} - 1\right| < \varepsilon, \ n > N$ Thus $\lim_{n \to \infty} \frac{\sqrt{n}-1}{\sqrt{n}+1} = 1$.

(d) $\lim_{n \to \infty} \frac{n+1}{n\sqrt{n}}.$ $\frac{n+1}{n\sqrt{n}} = \frac{1}{\sqrt{n}} + \frac{1}{n\sqrt{n}}$ If $\varepsilon > 0$ is given, then choosing $N > \frac{1}{\varepsilon^2}$ we have $\frac{1}{\sqrt{n}} < \varepsilon$, n > N.

Hence

$$\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0.$$

It also true that

$$\lim_{n\to\infty}\frac{1}{n\sqrt{n}}=0.$$

Thus,

$$\lim_{n\to\infty}\frac{n+1}{n\sqrt{n}}=0.$$

Answer: (a) 2; (b) 0; (c) 1; (d) 0.

Answer provided by https://AssignmentExpert.com