Answer on Question \#64525 - Math - Real Analysis

Question

Show that the following sequences are not convergent:
(a) 2^{n}, (b) $(-1)^{n} n^{2}$.

Solution

(a) Assume the contrary:

$$
\begin{equation*}
\lim 2^{n}=a \text { exists. } \tag{1}
\end{equation*}
$$

Then $\forall \varepsilon>0 \exists K \in N$ such that

$$
\left|2^{n}-a\right|<\varepsilon \forall n>K
$$

If we put $\varepsilon=1$ we have:

$$
\left|2^{n}-a\right|<1 \quad \forall n>K
$$

Hence $2^{n}<a+1$. It is known that $n<2^{n}$, so

$$
\begin{gathered}
n<2^{n}<a+1, \text { (2) } \\
n>K .
\end{gathered}
$$

Since $a+1 \in R$, by the Archimedean Property, $\exists M \in N$ such that $M>a+1$.
Then $\forall n>\max (K, M)$ one gets

$$
n>a+1 \text {. (3) }
$$

There is a contradiction between (2) and (3). It means that assumption (1) is false. Hence 2^{n} is not convergent.
(b) Assume the contrary:

$$
\begin{equation*}
\lim (-1)^{n} n^{2}=a \text { exists } \tag{4}
\end{equation*}
$$

Then $\forall \varepsilon>0 \exists K \in N$ such that $\left|(-1)^{n} n^{2}-a\right|<\varepsilon \forall n>K$.
If we put $\varepsilon=\frac{1}{2}$ we have: $\left|(-1)^{n} n^{2}-a\right|<\frac{1}{2} \quad \forall n>K$.
In particular, $\left|(-1)^{2 n} 4 n^{2}-a\right|<\frac{1}{2}$ and $\left|(-1)^{2 n+1}(2 n+1)^{2}-a\right|<\frac{1}{2}$.
So $\left|4 n^{2}-a\right|<\frac{1}{2}$ and $\left|4 n^{2}+4 n+1+a\right|<\frac{1}{2}, \forall n>K$.
Hence
$\left|4 n^{2}-a\right|+\left|4 n^{2}+4 n+1+a\right|<\frac{1}{2}+\frac{1}{2}=1$,
That is,

$$
\begin{equation*}
\left|4 n^{2}-a\right|+\left|4 n^{2}+4 n+1+a\right|<1 \tag{5}
\end{equation*}
$$

Using the triangle inequality,

$$
\begin{gathered}
\left|4 n^{2}-a\right|+\left|4 n^{2}+4 n+1+a\right| \geq\left|\left(4 n^{2}-a\right)+\left(4 n^{2}+4 n+1+a\right)\right|= \\
=\left|8 n^{2}+4 n+1\right|>1
\end{gathered}
$$

because $n>K \geq 1$.
That is,

$$
\left|4 n^{2}-a\right|+\left|4 n^{2}+4 n+1+a\right|>1
$$

(6)

There is a contradiction between (5) and (6).
It means that assumption (4) is false.
Hence (-1$)^{n} n^{2}$ is not convergent.

