Answer on Question #64525 – Math – Real Analysis

Question

Show that the following sequences are not convergent: (a) 2^n , (b) $(-1)^n n^2$.

Solution

(a) Assume the contrary:

 $lim2^n = a$ exists. (1)

Then $\forall \varepsilon > 0 \exists K \in N$ such that

$$|2^n-a|<\varepsilon \ \forall n>K.$$

If we put $\varepsilon = 1$ we have:

Hence
$$2^n < a + 1$$
. It is known that $n < 2^n$, so $n < 2^n < a + 1$, **(2)**

$$x_{2}^{n} < a + 1, (n > K)$$

Since $a + 1 \in R$, by the Archimedean Property, $\exists M \in N$ such that M > a + 1. Then $\forall n > max(K, M)$ one gets

$$n > a + 1$$
. (3)

There is a contradiction between (2) and (3). It means that assumption (1) is false. Hence 2^n is not convergent.

(b) Assume the contrary:

$$lim(-1)^{n}n^{2} = a \text{ exists.} \qquad (4)$$

Then $\forall \varepsilon > 0 \ \exists K \in N \text{ such that } |(-1)^{n}n^{2} - a| < \varepsilon \ \forall n > K.$
If we put $\varepsilon = \frac{1}{2}$ we have: $|(-1)^{n}n^{2} - a| < \frac{1}{2} \ \forall n > K.$
In particular, $|(-1)^{2n}4n^{2} - a| < \frac{1}{2} \text{ and } |(-1)^{2n+1}(2n+1)^{2} - a| < \frac{1}{2}.$
So $|4n^{2} - a| < \frac{1}{2}$ and $|4n^{2} + 4n + 1 + a| < \frac{1}{2}, \ \forall n > K.$
Hence
 $|4n^{2} - a| + |4n^{2} + 4n + 1 + a| < \frac{1}{2} + \frac{1}{2} = 1,$
That is,
 $|4n^{2} - a| + |4n^{2} + 4n + 1 + a| < 1 \qquad (5)$
Using the triangle inequality,
 $|4n^{2} - a| + |4n^{2} + 4n + 1 + a| \ge |(4n^{2} - a) + (4n^{2} + 4n + 1 + a)| = |8n^{2} + 4n + 1| > 1,$

because $n > K \ge 1$. That is, $|4n^2 - a| + |4n^2 + 4n + 1 + a| > 1$ (6) There is a contradiction between (5) and (6). It means that assumption (4) is false.

Hence $(-1)^n n^2$ is not convergent.

Answer provided by https://www.AssignmentExpert.com