Answer on Question \#64504 - Math - Calculus Question

I was wondering when the relationship of a capacitor in voltage and time is given by $V=95\left(1-e^{-0.1 t}\right)$, how would the graph look when you plot the graph between $t=0$ and $t=50$ at 10 intervals.
Also Find the differentiation value at $t=10$. To verify your solution use calculus.
Solution

t, sec	0	5	10	15	20	25	30	35	40	45	50
V, volts	0	37.38	60.05	73.82	82.14	87.21	90.27	92.13	93.26	93.95	94.36

To differentiate $V=95\left(1-e^{0.1 t}\right)$, we need to use the following rules:

1. $f^{\prime}(a x)=a f^{\prime}(x)$;
2. $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$;
3. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$;

Therefore,

$$
V^{\prime}(t)=95 \cdot\left(1-e^{-0.1 t}\right)^{\prime}=95 \cdot\left(1^{\prime}-\left(e^{-0.1 t}\right)^{\prime}\right)=-95 e^{-0.1 t} \cdot(-0.1)=9.5 e^{-0.1 t} .
$$

Thus, at $t=10$

$$
V^{\prime}(10)=9.5 e^{-0.1 \cdot 10}=9.5 e^{-1}=3.495 .
$$

