Find the no. of integral solutions of: $x y=2 x-y$.

$$
x y=2 x-y \rightarrow x y+y=2 x \rightarrow y(1+x)=2 x \rightarrow y=\frac{2 x}{1+x}
$$

The graph of that has vertical asymptote $\mathrm{x}=-1$ and horizontal asymptote $\mathrm{y}=2$.
We plot that graph:

The only possibility of y having an integral value when x has an integral value, is for integral values of x when y is at least 1 unit away from its horizontal asymptote $y=2$, and that is when

$$
\left|\frac{2 x}{1+x}-2\right| \geq 1
$$

By ordinary methods of college algebra, that has solution $[-3,-1) \cup(-1,1]$. So we only need to try x-values in that region which are $-3,-2,0$, and 1 .Substituting those in

$$
y=\frac{2 x}{1+x}
$$

we find the only four integral solutions: $(-3,3),(-2,4),(0,0),(1,1)$. So the number of integral solutions is 4 .

