Task 1. a, \mathbf{b}, \mathbf{c} are three unit vectors such that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=1 / 2 \mathbf{b}$. Find the angle \mathbf{a} makes with \mathbf{b} and \mathbf{c} (b and \mathbf{c} being non-parallel).

Solution. Use the triple product expansion:

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c},
$$

where $\mathbf{a} \cdot \mathbf{c}$ and $\mathbf{a} \cdot \mathbf{b}$ are the scalar products. Thus,

$$
(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=1 / 2 \mathbf{b},
$$

which is equivalent to

$$
(\mathbf{a} \cdot \mathbf{c}-1 / 2) \mathbf{b}=(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} .
$$

Since we are given that \mathbf{b} and \mathbf{c} are non-parallel, this equality implies

$$
\mathbf{a} \cdot \mathbf{c}-1 / 2=\mathbf{a} \cdot \mathbf{b}=0 .
$$

Thus, $\mathbf{a} \cdot \mathbf{c}=1 / 2$ and $\mathbf{a} \cdot \mathbf{b}=0$. The second equality means that \mathbf{a} and \mathbf{b} are perpendicular. The first one means that the cosine of the angle between a and \mathbf{c} equals $1 / 2$, because all the vectors have the unit length, and, therefore, this angle equals 60 degrees.
Answer. a makes 90 degrees with \mathbf{b} and 60 degrees with c.

