Answer on Question \#64308 - Math - Algebra
 Question

$x-y=w$
$x+4 y=3 v$
$x-v 2=w 2$
$5 v+x=w$
$x 2=6 y$
$x 2+v=w 2$
$x 2+v=w 2$
x2 divide by $2=w-y$
$x 2+7$ divide by $w=y$
x divide by $y-7=v$

Solution

It follows from the fifth equation $x^{2}=6 y$ of the system that

$$
\begin{equation*}
y=\frac{x^{2}}{6} \tag{1}
\end{equation*}
$$

Substituting (1) into the first equation $x-y=w$ of the system obtain

$$
x-\frac{x^{2}}{6}=w(2)
$$

Using (1) and (2) it follows from the eighth equation $\frac{x^{2}}{2}=w-y$ of the system that

$$
\begin{gathered}
\frac{x^{2}}{2}=\left(x-\frac{x^{2}}{6}\right)-\frac{x^{2}}{6} \\
\frac{x^{2}}{2}=x-\frac{x^{2}}{6}-\frac{x^{2}}{6} \\
\frac{x^{2}}{2}=x-\frac{x^{2}}{3}
\end{gathered}
$$

$$
\begin{gathered}
\frac{5 x^{2}}{6}-x=0, \\
x\left(\frac{5 x}{6}-1\right)=0, \\
x=0 \text { or } \frac{5 x}{6}-1=0, \\
x=0 \text { or } x=\frac{6}{5} .
\end{gathered}
$$

If $x=0$, then one gets $y=\frac{0^{2}}{6}=0$ using (1) and $w=0-\frac{0^{2}}{6}=0$ using (2), but it affects the ninth equation $x^{2}+\frac{7}{w}=y$. Because it is not possible to divide by zero, then $x=0, y=0, w=0$ is not a solution of the system.

If $x=\frac{6}{5}$, one gets $y=\frac{\left(\frac{6}{5}\right)^{2}}{6}=\frac{6}{25}$ using (1) and $w=\frac{6}{5}-\frac{\left(\frac{6}{5}\right)^{2}}{6}=\frac{6}{5}-\frac{6}{25}=\frac{24}{25}$ using (2). Substituting $x=\frac{6}{5}, y=\frac{6}{25}, w=\frac{24}{25}$ into the ninth equation $x^{2}+\frac{7}{w}=y$:

$$
\begin{gathered}
\left(\frac{6}{5}\right)^{2}+\frac{7}{\frac{24}{25}}=\frac{6}{25} \\
\frac{36}{25}+\frac{175}{24}=\frac{6}{25} \\
\frac{36 \cdot 24+175 \cdot 25}{25 \cdot 24}=\frac{6}{25} \\
\frac{5239}{600}=\frac{6}{25}
\end{gathered}
$$

which is false.
Then $x=\frac{6}{5}, y=\frac{6}{25}, w=\frac{24}{25}$ is not a solution of the system.
Answer: no solution.

