Answer on Question \#64235 - Math - Statistics and Probability

Question

If electricity power failures occur according to a Poisson distribution with an average of 3 failures every twenty weeks, calculate the probability that:
i. at most one failure during a particular week.
ii. exactly 4 failures within ten weeks.

Solution

i. Let the amount of the power failures during 1 week be L_{1}. The distribution of a random variable L_{1} is a Poisson distribution with the average $\lambda_{1}=\lambda$:

$$
P\left(L_{1}=l\right)=\frac{\lambda_{1}^{l}}{l!} e^{-\lambda_{1}}
$$

There are 3 failures during 20 weeks on average: $20 E\left(L_{1}\right)=3$, hence $E\left(L_{1}\right)=\lambda_{1}=3 / 20 \quad\left(E\left(L_{1}\right)\right.$ is the mathematical expectation of L_{1}, i.e., its average).
Next,

$$
\begin{aligned}
& P\left(L_{1} \leq 1\right)=P\left(L_{1}=0\right)+P\left(L_{1}=1\right)=\frac{\lambda_{1}^{0}}{0!} e^{-\lambda_{1}}+\frac{\lambda_{1}^{1}}{1!} e^{-\lambda_{1}}=\frac{(\lambda t)^{0}}{0!} e^{-\lambda t}+\frac{(\lambda t)^{1}}{1!} e^{-\lambda t}= \\
& \quad=e^{-\lambda t}+\lambda t e^{-\lambda t}=(1+\lambda t) e^{-\lambda_{1} t}=\left(1+\frac{3}{20} \cdot 1\right) e^{-3 / 20}=\frac{23}{20} e^{-3 / 20} \approx 0.990 .
\end{aligned}
$$

ii. Let the amount of the power failures during 10 weeks be L_{10}. The distribution of a random variable L_{10} is a Poisson distribution with the average $\lambda_{10}=\lambda t$:

$$
P\left(L_{10}=l\right)=\frac{\lambda_{10}^{l}}{l!} e^{-\lambda_{10}},
$$

hence

$$
P\left(L_{10}=4\right)=\frac{(\lambda t)^{4}}{4!} e^{-\lambda t}=\frac{\left(\frac{3}{20} \cdot 10\right)^{4}}{4!} e^{-\frac{3}{20} \cdot 10}=\frac{\left(\frac{3}{2}\right)^{4}}{4!} e^{-\frac{3}{2}}=\frac{27}{128} e^{-\frac{3}{2}} \approx 0.047 .
$$

Indeed, the amount of the power failures during 20 weeks is a sum of 2 random variables with the mass function $\frac{\lambda_{10}^{l}}{l!} e^{-\lambda_{10}}$. Consequently, $2 E\left(L_{10}\right)=3, E\left(L_{10}\right)=\lambda_{10}=3 / 2$. Next,

$$
P\left(L_{10}=4\right)=\frac{\lambda_{10}^{4}}{4!} e^{-\lambda_{10}}=\frac{\left(\frac{3}{2}\right)^{4}}{4!} e^{-\frac{3}{2}}=\frac{27}{128} e^{-\frac{3}{2}} \approx 0.047
$$

Answer:

i. The probability that at most one failure during a particular week is $\frac{23}{20} e^{-3 / 20} \approx 0.990$.
ii. The probability that exactly 4 failures within ten weeks is $\frac{27}{128} e^{-\frac{3}{2}} \approx 0.047$.

