Answer on Question #64180 – Math – Statistics and Probability

Question

A dice is thrown 5 times . What is the probability of getting sum 25?

Solution

Method 1

Let *A* be the event of getting the sum of 25, *N* is the number of all possibilities and *K* is the number of possibilities satisfying *A*.

Let's use the classical definition of probability:

$$P(A) = \frac{K}{N}$$

N is equal to the number of all possible variants to choose the outcome five times:

$$N = 6^5 = 7776.$$

We can receive K as the number of nonnegative integer solutions to the equation

 $k_1 + k_2 + k_3 + k_4 + k_5 = 25$, where $1 \le k_i \le 6$, i = 1, 2, 3, 4, 5.

Let $k_1 = m_1 + 1$, $k_2 = m_2 + 1$, $k_3 = m_3 + 1$, $k_4 = m_4 + 1$, $k_5 = m_5 + 1$, where $0 \le m_i \le 5, i = 1, 2, 3, 4, 5$.

Then

 $k_1 + k_2 + k_3 + k_4 + k_5 = m_1 + 1 + m_2 + 1 + m_3 + 1 + m_4 + 1 + m_5 + 1 = 25,$ hence

 $m_1 + m_2 + m_3 + m_4 + m_5 = 20, \ 0 \le m_i \le 5, i = 1, 2, 3, 4, 5.$

There are $|S| = {20 + 5 - 1 \choose 5 - 1} = {24 \choose 4} = \frac{24 \cdot 23 \cdot 22 \cdot 21}{4 \cdot 3 \cdot 2} = 23 \cdot 22 \cdot 21 = 10626$ non-negative solutions to the equation $m_1 + m_2 + m_3 + m_4 + m_5 = 20, m_i \ge 0.$

Solutions in P_1 correspond to non-negative integer solutions of

$$\begin{split} l_1 + m_2 + m_3 + m_4 + m_5 &= 20 - 6 & \text{after substitution } m_1 = l_1 + 6, \ l_1 \geq 0, \text{ the} \\ \text{answer is} \begin{pmatrix} 20 - 6 + 5 - 1 \\ 5 - 1 \end{pmatrix} = \begin{pmatrix} 18 \\ 4 \end{pmatrix} = \frac{18 \cdot 17 \cdot 16 \cdot 15}{4 \cdot 3 \cdot 2} = 3 \cdot 17 \cdot 4 \cdot 15 = 3060. \end{split}$$

Solutions in $P_1 \cap P_2$ correspond to non-negative integer solutions of

 $l_1 + l_2 + m_3 + m_4 + m_5 = 20 - 6 - 6$ after substitutions

 $m_1 = l_1 + 6, m_2 = l_2 + 6, l_1 \ge 0, l_2 \ge 0$, the answer is

$$\binom{20-6-6+5-1}{5-1} = \binom{12}{4} = \frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2} = 11 \cdot 5 \cdot 9 = 495.$$

Solutions in $P_1 \cap P_2 \cap P_3$ correspond to non-negative integer solutions of

 $l_1 + l_2 + l_3 + m_4 + m_5 = 20 - 6 - 6 - 6 \text{ after substitutions}$ $m_1 = l_1 + 6, m_2 = l_2 + 6, m_3 = l_3 + 6, l_1 \ge 0, l_2 \ge 0, l_3 \ge 0,$ $\text{the answer is } \binom{20 - 6 - 6 - 6 + 5 - 1}{5 - 1} = \binom{6}{4} = \frac{6 \cdot 5 \cdot 4!}{4! \cdot 2!} = 15.$

Applying inclusion-exclusion formula, we have

$$|P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5| = \sum_{i=1}^5 |P_i| - \sum_{1 \le i < j \le 5} |P_i \cap P_j| + \sum_{1 \le i < j < k \le 5} |P_i \cap P_j \cap P_k| =$$

$$= 5 \cdot 3060 - 10 \cdot 495 + 10 \cdot 15 = 10500$$

We are interested in

 $K = |\bar{P}_1 \cap \bar{P}_2 \cap \bar{P}_3 \cap \bar{P}_4 \cap \bar{P}_5| = |S| - |P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5| = 10626 - -10500 = 126.$

Finally

$$P(A) = \frac{K}{N} = \frac{126}{7776}.$$

<u>Method 2</u>

We can receive K by writing down and counting all suitable situations sorted by minimal number received:

- 1) $k_1 = 1, k_2 = 6, k_3 = 6, k_4 = 6, k_5 = 6$. There are 5 ways depending on a number thrown.
- 2) $k_1 = 2, k_2 = 5, k_3 = 6, k_4 = 6, k_5 = 6$. There are 5 ways to locate "2" and 4 possibilities to get "5" at once. So we have $5 \cdot 4 = 20$ variants.

3)

A) $k_1 = 3, k_2 = 4, k_3 = 6, k_4 = 6, k_5 = 6$. (Similarly, 20 variants)

B) $k_1 = 3, k_2 = 5, k_3 = 5, k_4 = 6, k_5 = 6$. In this case there are 5 possibilities to locate "3", 4 possibilities to get "5" for the first time and 3 possibilities to get "5" for the second time.

We get $5 \cdot 4 \cdot 3 = 60$ variants.

4)
$$k_1 = 4, k_2 = 5, k_3 = 5, k_4 = 5, k_5 = 6$$
. (20 variants)
5) $k_1 = 5, k_2 = 5, k_3 = 5, k_4 = 5, k_5 = 5$ (1 variant)

Variant of getting "6" five times is impossible, because the sum of numbers will be 30 then.

Now

$$K = 5 + 20 + 20 + 60 + 20 + 1 = 126$$

Finally

$$P(A) = \frac{K}{N} = \frac{126}{7776}.$$

Answer: $\frac{126}{7776}$.