## Answer on Question \#64180 - Math - Statistics and Probability

## Question

A dice is thrown 5 times. What is the probability of getting sum 25 ?

## Solution

## Method 1

Let $A$ be the event of getting the sum of $25, N$ is the number of all possibilities and $K$ is the number of possibilities satisfying $A$.

Let's use the classical definition of probability:

$$
P(A)=\frac{K}{N}
$$

$N$ is equal to the number of all possible variants to choose the outcome five times:

$$
N=6^{5}=7776
$$

We can receive $K$ as the number of nonnegative integer solutions to the equation
$k_{1}+k_{2}+k_{3}+k_{4}+k_{5}=25$, where $1 \leq k_{i} \leq 6, i=1,2,3,4,5$.
Let $k_{1}=m_{1}+1, k_{2}=m_{2}+1, k_{3}=m_{3}+1, k_{4}=m_{4}+1, k_{5}=m_{5}+1$, where $0 \leq m_{i} \leq 5, i=1,2,3,4,5$.

Then
$k_{1}+k_{2}+k_{3}+k_{4}+k_{5}=m_{1}+1+m_{2}+1+m_{3}+1+m_{4}+1+m_{5}+1=25$, hence

$$
m_{1}+m_{2}+m_{3}+m_{4}+m_{5}=20,0 \leq m_{i} \leq 5, i=1,2,3,4,5
$$

Let $P_{1} \Leftrightarrow m_{1}>5 \Leftrightarrow m_{1} \geq 6, P_{2} \Leftrightarrow m_{2}>5 \Leftrightarrow m_{2} \geq 6, P_{3} \Leftrightarrow m_{3}>5 \Leftrightarrow$ $m_{3} \geq 6, P_{4} \Leftrightarrow m_{4}>5 \Leftrightarrow m_{4} \geq 6, P_{5} \Leftrightarrow m_{5}>5 \Leftrightarrow m_{5} \geq 6$.

There are $|S|=\binom{20+5-1}{5-1}=\binom{24}{4}=\frac{24 \cdot 23 \cdot 22 \cdot 21}{4 \cdot 3 \cdot 2}=23 \cdot 22 \cdot 21=10626$ nonnegative solutions to the equation $m_{1}+m_{2}+m_{3}+m_{4}+m_{5}=20, m_{i} \geq 0$.

Solutions in $P_{1}$ correspond to non-negative integer solutions of
$l_{1}+m_{2}+m_{3}+m_{4}+m_{5}=20-6$ after substitution $m_{1}=l_{1}+6, l_{1} \geq 0$, the answer is $\binom{20-6+5-1}{5-1}=\binom{18}{4}=\frac{18 \cdot 17 \cdot 16 \cdot 15}{4 \cdot 3 \cdot 2}=3 \cdot 17 \cdot 4 \cdot 15=3060$.

Solutions in $P_{1} \cap P_{2}$ correspond to non-negative integer solutions of

$$
l_{1}+l_{2}+m_{3}+m_{4}+m_{5}=20-6-6 \text { after substitutions }
$$

$m_{1}=l_{1}+6, m_{2}=l_{2}+6, l_{1} \geq 0, l_{2} \geq 0$, the answer is

$$
\binom{20-6-6+5-1}{5-1}=\binom{12}{4}=\frac{12 \cdot 11 \cdot 10 \cdot 9}{4 \cdot 3 \cdot 2}=11 \cdot 5 \cdot 9=495 .
$$

Solutions in $P_{1} \cap P_{2} \cap P_{3}$ correspond to non-negative integer solutions of
$l_{1}+l_{2}+l_{3}+m_{4}+m_{5}=20-6-6-6$ after substitutions $m_{1}=l_{1}+6, m_{2}=l_{2}+6, m_{3}=l_{3}+6, l_{1} \geq 0, l_{2} \geq 0, l_{3} \geq 0$, the answer is $\binom{20-6-6-6+5-1}{5-1}=\binom{6}{4}=\frac{6 \cdot 5 \cdot 4!}{4!\cdot 2!}=15$.

Applying inclusion-exclusion formula, we have

$$
\left|P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5}\right|=\sum_{i=1}^{5}\left|P_{i}\right|-\sum_{1 \leq i<j \leq 5}\left|P_{i} \cap P_{j}\right|+\sum_{1 \leq i<j<k \leq 5}\left|P_{i} \cap P_{j} \cap P_{k}\right|=
$$

$$
=5 \cdot 3060-10 \cdot 495+10 \cdot 15=10500 .
$$

We are interested in
$K=\left|\bar{P}_{1} \cap \bar{P}_{2} \cap \bar{P}_{3} \cap \bar{P}_{4} \cap \bar{P}_{5}\right|=|S|-\left|P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5}\right|=10626-$ $-10500=126$.

Finally

$$
P(A)=\frac{K}{N}=\frac{126}{7776} .
$$

## Method 2

We can receive $K$ by writing down and counting all suitable situations sorted by minimal number received:

1) $k_{1}=1, k_{2}=6, k_{3}=6, k_{4}=6, k_{5}=6$. There are 5 ways depending on a number thrown.
2) $k_{1}=2, k_{2}=5, k_{3}=6, k_{4}=6, k_{5}=6$. There are 5 ways to locate " 2 " and 4 possibilities to get " 5 " at once. So we have $5 \cdot 4=20$ variants.
3) 

A) $k_{1}=3, k_{2}=4, k_{3}=6, k_{4}=6, k_{5}=6$. (Similarly, 20 variants)
B) $k_{1}=3, k_{2}=5, k_{3}=5, k_{4}=6, k_{5}=6$. In this case there are 5 possibilities to locate " 3 ", 4 possibilities to get " 5 " for the first time and 3 possibilities to get " 5 " for the second time.

We get $5 \cdot 4 \cdot 3=60$ variants.
4) $k_{1}=4, k_{2}=5, k_{3}=5, k_{4}=5, k_{5}=6$. (20 variants)
5) $k_{1}=5, k_{2}=5, k_{3}=5, k_{4}=5, k_{5}=5$ (1 variant)

Variant of getting " 6 " five times is impossible, because the sum of numbers will be 30 then.

Now

$$
K=5+20+20+60+20+1=126
$$

Finally

$$
P(A)=\frac{K}{N}=\frac{126}{7776} .
$$

Answer: $\frac{126}{7776}$.

