Answer on Question \#64141 - Math - Geometry

Question

3. A trough having a trapezoidal cross section is full of water. If the trapezoid is 3 ft wide at the top, 2 ft wide at the bottom, and 2 ft deep, find the total force owing to water pressure on one end of the trough.

Solution

$\Delta F=$ pressure \cdot Area $=(w \cdot$ depth $) \cdot($ length \cdot width $)=(w \cdot h(y)) \cdot(c(y) \cdot \Delta y)$
The force F exerted by a fluid of constant weight-density w (per unit of volume) against a submerged vertical plane region from $y=y_{1}$ to $y=y_{2}$ is

$$
F=w \lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} h\left(y_{i}\right) c\left(y_{i}\right) \Delta y=w \int_{y_{1}}^{y_{2}} h(y) c(y) d y
$$

where $h(y)$ is the depth of the fluid at y and $c(y)$ is the horizontal length of the region on y.
$S_{\text {trap }}=\frac{a+b}{2} h=\frac{a+c(y)}{2} y+\frac{c(y)+b}{2}(h-y) ;$
$a h+b h=a y+c(y) y+c(y) h+b h-c(y) y-b y ;$
$a h=a y+c(y) h-b y ;$
$c(y)=\frac{a h-a y+b y}{h}=a-\frac{a-b}{h} y$.
$h(y)=y, c(y)=a-\frac{a-b}{h} y$
We have that
$w=62.4 \mathrm{lb} / \mathrm{ft}^{3}, a=3 \mathrm{ft}, \mathrm{b}=2 \mathrm{ft}, \mathrm{h}=2 \mathrm{ft}$.
$F=w \int_{0}^{h} y\left(a-\frac{a-b}{h} y\right) d y$;

$$
\begin{gathered}
F=62.4 \int_{0}^{2} y\left(3-\frac{3-2}{2} y\right) d y=\left.62.4\left(\frac{3}{2} y^{2}-\frac{1}{6} y^{3}\right)\right|_{0} ^{2}=62.4\left(\frac{3}{2} \cdot 2^{2}-\frac{1}{6} \cdot 2^{3}\right) \\
=62.4\left(6-\frac{4}{3}\right)=62.4 \cdot \frac{14}{3}=291.2(\mathrm{lb}) .
\end{gathered}
$$

Answer: 291.2 lb.

Question

4. Find the total force on the dam due to the fluid pressure:

Rectangle 200 ft wide, 15 ft high; water 10 ft deep
Solution

$\Delta F=$ pressure \cdot Area $=(w \cdot$ depth $) \cdot($ length \cdot width $)=(w \cdot h(y)) \cdot(c(y) \cdot \Delta y)$
The force F exerted by a fluid of constant weight-density w (per unit of volume) against a submerged vertical plane region from $y=y_{1}$ to $y=y_{2}$ is

$$
F=w \lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} h\left(y_{i}\right) c\left(y_{i}\right) \Delta y=w \int_{y_{1}}^{y_{2}} h(y) c(y) d y
$$

where $h(y)$ is the depth of the fluid at y and $c(y)$ is the horizontal length of the region on y :
$h(y)=y, c(y)=a$.
We have that
$w=\underset{c+b}{62.4} \mathrm{lb} / \mathrm{ft}^{3}, a=200 \mathrm{ft}, b=15 \mathrm{ft}, c=10 \mathrm{ft}$.
$F=w \int_{c}^{c+b} y \cdot a d y ;$
$F=62.4 \int_{10}^{10+15} y 200 d y=62.4 \cdot 200 \frac{y^{2}}{2} \left\lvert\, \begin{aligned} & 25 \\ & 10\end{aligned}=62.4 \cdot 100 \cdot\left(25^{2}-10^{2}\right)=\right.$ $=3276000(l b)$.
Answer: 3276000 lb.

