Question\#6411. The line of shortest distance of the lines $(x / 2)=(-y / 3)=(z)$ and $(x-2) / 3=(y-1) /-$ $5=(z+2) / 2$ intersects these two lines in P and Q respectively.

Find the shortest distance between these two lines, find the coordinates of P and of Q .

Solution

$l_{1}: \frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$
$l_{2}: \frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$
The shortest distance between these two lines we will find by the formula:
$d=\frac{\left|M_{1} M_{2} * \vec{a}\right|}{|\vec{a}|}$
$\vec{a}=\vec{s}_{1} \times \vec{s}_{2}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 1 \\ 3 & -5 & 2\end{array}\right|=-\vec{i}-\vec{j}-\vec{k}$;
$M_{1} M_{2}=(-2-1 ;-1-0 ; 2-0)=(-3 ;-1 ; 2)$
$|\vec{a}|=\sqrt{3}$
$\left|M_{1} M_{2} * \vec{a}\right|=(-3) *(-1)+(-1) *(-1)+(2) *(-1)=2$
$d=\frac{\left|M_{1} M_{2} * \vec{a}\right|}{|\vec{a}|}=\frac{2}{\sqrt{3}}$ - the shortest distance between the lines l_{1} and l_{2}
The canonical equation of the line, which is the shortest distance between the lines l_{1} and l_{2} :
$\frac{x-a}{m}=\frac{y-b}{n}=\frac{z-c}{k}$, where $\vec{a}=(m ; n ; k)=(-1 ;-1 ;-1)$
$\frac{x-a}{-1}=\frac{y-b}{-1}=\frac{z-c}{-1}$

