## Answer on Question \#64032 - Math - Geometry

## Question

A piece of wire of length 52 m is cut into two parts. Each part is then bent to form a square. It is found that the combined area of two squares is $109 \mathrm{~m}^{2}$. Find the measures of the sides of the two squares.

## Solution

Let the side of the first square be $x$, and $y$ be the side of the second square.
The combined area of two squares is

$$
\begin{equation*}
x^{2}+y^{2}=10 \tag{1}
\end{equation*}
$$

On the other hand, the perimeter of the first square is $4 x$, and the perimeter of the second square is $4 y$.

The sum of these perimeters is equal to the length of the wire:

$$
4 x+4 y=52
$$

It follows from equation (2) that $y=\frac{52-4 x}{4}$, that is, $y=13-x$ and substitute it into equation (1):
$x^{2}+(13-x)^{2}=109 ;$
$x^{2}+169-26 x+x^{2}=109 ;$
$2 x^{2}-26 x+60=0 ;$
$x^{2}-13 x+30=0 ;$
$x=\frac{13-\sqrt{(-13)^{2}-4 \cdot 1 \cdot 30}}{2}$ or $x=\frac{13+\sqrt{(-13)^{2}-4 \cdot 1 \cdot 30}}{2} ;$
$x=\frac{13-7}{2}$ or $x=\frac{13+7}{2}$.
$x=3$ or $x=10$.

If $x=3$, then $y=10$, and vice versa. The measures of the sides of the two squares are 3 m and 10 m .

## Answer:

