Answer on Question \#63948 - Math - Geometry
 \section*{Question}

Two posts, one 8 feet high and the other 12 feet high, stand 15 feet apart. They are to be stayed by wires attached to a single stake at ground level, the wires running to the top of the posts. Where the stake should be placed, to use the least amount of wire?

Solution

Let x be the distance from the 12 foot pole where the wire touches the ground. The length of the wire connecting the 12 foot pole to the ground is $\sqrt{x^{2}+12^{2}}$ according to the Pythagorean Theorem. Since the two poles are 15 feet apart, the wire connecting the 8 foot pole will touch the ground $15-x$ feet from the pole.
The length of this wire is $\sqrt{(15-x)^{2}+8^{2}}$.
We have to minimize

$$
L(x)=\sqrt{x^{2}+12^{2}}+\sqrt{(15-x)^{2}+8^{2}} .
$$

Compute the first derivative

$$
L^{\prime}(x)=\left(\sqrt{x^{2}+12^{2}}+\sqrt{(15-x)^{2}+8^{2}}\right)^{\prime}=\frac{x}{\sqrt{x^{2}+12^{2}}}-\frac{15-x}{\sqrt{(15-x)^{2}+8^{2}}} .
$$

$L^{\prime}(x)$ is defined for $x \in R$, but we consider $0 \leq x<+15$.
$L^{\prime}(x)=0=>\frac{x}{\sqrt{x^{2}+12^{2}}}-\frac{15-x}{\sqrt{(15-x)^{2}+8^{2}}}=0 \Rightarrow>$
$=>\frac{x}{\sqrt{x^{2}+12^{2}}}=\frac{15-x}{\sqrt{(15-x)^{2}+8^{2}}}$;
$x \sqrt{(15-x)^{2}+8^{2}}=(15-x) \sqrt{x^{2}+12^{2}}$.
In order to solve for x it is easiest to square both sides and simplify:
$x^{2}\left((15-x)^{2}+8^{2}\right)=(15-x)^{2}\left(x^{2}+12^{2}\right)$;
$x^{2}(15-x)^{2}+64 x^{2}=(15-x)^{2} x^{2}+144(15-x)^{2}$;
subtract $x^{2}(15-x)^{2}$ from the left-hand and the right-hand sides:
$64 x^{2}=144(15-x)^{2} ;$
divide by 16 through:
$4 x^{2}=9(15-x)^{2}$;
$4 x^{2}=9\left(225-30 x+x^{2}\right)$;
$5 x^{2}-270 x+2025=0$;
divide by 5 :
$x^{2}-54 x+405=0 ;$
$(x-9)(x-45)=0,0 \leq x \leq 15$.
We exclude $x=45$. Therefore $x=9$.
Using the First Derivative Test
If we choose $x=0 \in[0,9)$, then

$$
L^{\prime}(0)=\frac{0}{\sqrt{0^{2}+12^{2}}}-\frac{15-0}{\sqrt{(15-0)^{2}+8^{2}}}=-\frac{15}{17}<0 .
$$

If we choose $x=15 \in(9,15]$, then

$$
L^{\prime}(15)=\frac{15}{\sqrt{15^{2}+12^{2}}}-\frac{15-15}{\sqrt{(15-15)^{2}+8^{2}}}=\frac{15}{\sqrt{369}}>0 .
$$

Since the derivative changes from negative to positive, $\mathrm{L}(\mathrm{x})$ will have a minimum when $x=9$.
Therefore the stake should be placed 9 feet from the 12 foot pole.
Answer: the stake should be placed 9 feet from the 12 foot pole.

