$Q_{i}=\left\{q^{*} i\left|x^{2}+q^{2} x+4=0\right| q\right.$ is an element of N, x is an element of $\left.R\right\}$.
Then:
for $x^{2}+q^{2} x+4=0$:
Implicit plot:

The solution is:
$D=q^{4}-16$
$|q|<2=>$ no solutions ;
$|q|=2=>x=-2$;
$|q|>2=>x=0.5\left(-q^{2}+\left(q^{4}-16\right)^{0.5}\right) ; x=0.5\left(-q^{2}-\left(q^{4}-16\right)^{0.5}\right)$.
Then we can see, that $q=\{2,3,4,5, \ldots\}$ (as $q \in N$), and, respectively, x takes real values. => $q=N \backslash\{1\}$
$Q_{1}=\{2,3,4,5,6,7,8,9, \ldots\}$
$Q_{2}=\{4,6,8,10,12,14,16,18, \ldots\}$
$Q_{k}=\{2 k, 3 k, 4 k, 5 k, 6 k, 7 k, 8 k, \ldots\}$
From this we can assume:
$U_{\infty} \mathrm{i}=1 \mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{1}=\left\{\mathrm{q}\left|\mathrm{x}^{2}+\mathrm{q}^{2} \mathrm{x}+4=0\right| \mathrm{q}\right.$ is an element of N, x is an element of R$\}$. $\bigcap \infty \mathrm{i}=1 \mathrm{Q}_{\mathrm{i}}=\varnothing$.

