Answer on Question \#63917 - Math - Discrete Mathematics

Question

Let a relation $R=(x,-x) \mid x^{2}=x(\bmod 2 x)$, whereby x element of positive integer. Determine whether R is reflexive, symmetric, anti-symmetric or transitive.

Solution

Here $x^{2}=x(\bmod 2 x)$ and $(x,-x) \in R$.
If $x^{2}=x(\bmod 2 x)$, then $x^{2}=x+2 k x=(2 k+1) x$,
$x=2 k+1$.

1) Is R reflexive?

By a definition of a reflexive relation, all the pairs of (x, x) must be in R .
But only the pairs $(x,-x)$ exist in R .
The only possible case is $x=0$, but 0 is not a positive number.

Thus, a relation \underline{R} is not reflexive.
2) Is R symmetric?

By a definition of a symmetric relation, if (x, y) are in R , then (y, x) are in R too.

By a definition of R , only pairs $(x,-x)$ are in R , where x is a positive integer.
Pairs $(-x, x)$ may be regarded only when $x=0$, but 0 is not a positive number.

Thus, a relation \underline{R} is not symmetric.
3) Is R anti-symmetric?

By a definition of an anti-symmetric relation, if (x, y) are in R and (y, x) are in R , then $x=y$.

If $(x,-x)$ are in R and $(-x, x)$ are in R , then $x=-x$, that is, $x=0$.
The conclusion is true in this problem.

Therefore, a relation R is anti-symmetric.
4) Is R transitive?

By a definition of a transitive relation, the following property holds true:

$$
(x, y),(y, z) \in R \rightarrow(x, z) \in R .
$$

By a definition of R, only pairs $(x,-x),(y,-y)$ are in R.
Using the two previous definitions one conclude
$-x=y$ and $-y=z \leftrightarrow-x=-z \leftrightarrow x=z$.
Thus, a relation \underline{R} is transitive.

Answer:

1) nonreflexive; 2) nonsymmetric; 3) anti-symmetric; 4) transitive.
