Task 1. Let p and q be two distinct primes. How many kinds of abelian groups are there of order $p^{3} q$ (up to isomorphism)?

Solution. By the fundamental theorem of finite abelian groups each finite abelian group is isomorphic to the direct sum of cyclic groups of prime-power order. In our case the following pairwise non-isomorphic decompositions are possible:

$$
\begin{aligned}
\mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{q} & \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p} \oplus \mathbb{Z}_{p q} \\
\mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2}} \oplus \mathbb{Z}_{q} & \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{2} q} \\
\mathbb{Z}_{p^{3}} \oplus \mathbb{Z}_{q} & \cong \mathbb{Z}_{p^{3} q}
\end{aligned}
$$

Thus, there are 3 kinds of abelian groups of order $p^{3} q$. Answer: 3.

