Answer on Question \#63808 - Math - Algebra

Question

If you are given $y=2 \cos 3 x$. What do you do? I mean how do you change your graph from base graph? What do you do with the 2 and 3 ?

Solution

Operations applied to the 'outside' of a function affect the vertical aspects of the graph. Operations applied to the 'inside' (argument) of a function affect the horizontal aspects of the graph.

We can see that the transformation $y=2 \cos (x)$ has a vertical effect on the graph of $y=\cos (x)$, because it stretches $y=\cos (x)$ by 2 in the y-direction: the x coordinates stay the same and the y coordinates are multiplied by 2 . Remember that the x-intercepts do not move under vertical stretches and shrinks: if $f(x)=0$ for some value of x, then $k f(x)=0$ for the same values of x. The x-intercepts of $y=\cos (x)$ are $x=-\frac{\pi}{2}+n \pi$, where n is integer.

Nevertheless, the transformation $y=\cos (3 x)$ has a horizontal effect on the graph of $y=\cos (x)$, because it shrinks (compresses) $y=\cos (x)$ by 3 in the x-direction: the y coordinates stay the same and the x coordinates are divided by 3 .

Though in most instances, we take the operations 'from the inside out', remember that the vertically-oriented transformations do not affect the horizontally-oriented transformations, and vice versa.

Therefore, the order of transformations does not matter in this problem and there exist two ways of the solution.

Method 1

If we want to obtain the graph of $y=2 \cos 3 x$ from the base graph of $y=\cos x$, we must do the following steps:

1) Vertically stretch the base graph by a factor of 2 :

$$
f(x)=\cos (x) \rightarrow g(x)=2 \cos (x)
$$

Fig. 1 Plot of $y=\cos (x)$

Fig. 2 Plot of $y=2 \cos (x)$
2) Horizontally shrink the graph by a factor of 3 :

$$
g(x)=2 \cos (x) \rightarrow h(x)=2 \cos (3 x) .
$$

Fig. 3 Plot of $y=2 \cos (3 x)$

Method 2

If we want to obtain the graph of $y=2 \cos 3 x$ from the base graph of $y=\cos x$, we must do the following steps:

1) Horizontally shrink the base graph by a factor of 3 :

$$
p(x)=\cos (x) \rightarrow q(x)=\cos (3 x)
$$

Fig. 4 Plot of $y=\cos (x)$

Fig. 5 Plot of $y=\cos (3 x)$
2) Vertically stretch the graph by a factor of 2 :

$$
q(x)=\cos (3 x) \rightarrow r(x)=2 \cos (3 x)
$$

Fig. 6 Plot of $y=2 \cos (3 x)$

