Answer on Question \#63787 - Math - Algorithms | Quantitative Methods

Question

Are the following TRUE or FALSE. Explain
$\mathrm{n} 2=\mathrm{O}(\mathrm{n} 2)$
$\mathrm{n} 3=\mathrm{O}(\mathrm{n} 2)$
$n \log n=O(n 2)$
$\mathrm{n} 2=\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})$

Solution

a) $n^{2}=O\left(n^{2}\right)$

TRUE. We can see this if we set $c=1$, then $n^{2} \leq c n^{2}=n^{2}$ for all $n \geq 1$.
Thus, the definition of big-O holds for $c=1$ and $n_{0}=1$.
b) $n^{3}=O\left(n^{2}\right)$

FALSE. For it to be true, we would need that there exist positive constants c and n_{0} such that $n^{3} \leq c n^{2}$ for all $n \geq n_{0}$. By dividing both sides by n^{2}, we see that " $n^{3} \leq$ $c n^{2}$ for all $n \geq n_{0}$ " is true if and only if " $\mathrm{n} \leq c$ for all $n \geq n_{0}$ " is true, but clearly there are no constants c and n_{0} for which the last statement is true.
c) $n \log n=O\left(n^{2}\right)$

TRUE. Because $\ln (1+x) \leq x$ for all $x>-1$, hence $\ln (1+x) \leq(x+1)-1<$ $2(x+1)$.

Therefore, $\log n=O(n)$. There exist positive constants c and n_{0} such that $\log n \leq c n$ for all
$n \geq n_{0}$. Multiplying both sides by n gives $n \log n \leq c n^{2}$ for all $n \geq n_{0}$ for the same positive constants c and n_{0}, so $n \log n=O\left(n^{2}\right)$.
d) $n^{2}=O\left(n \log ^{2} n\right)$

FALSE. First, note that $n^{2}=O\left(n \log ^{2} n\right)$ if and only if there exist positive constants c and n_{0} such that $n^{2} \leq c n \log ^{2} n$ for all $n \geq n_{0}$, which holds if and only if

$$
\begin{equation*}
\frac{n^{2}}{n \log ^{2} n} \text { for all } n \geq n_{0} \tag{1}
\end{equation*}
$$

By cancelling out the n from the numerator and the denominator, we can rewrite expression in (1) as

$$
\frac{n}{\log ^{2} n} \leq c \text { for all } n \geq n_{0}
$$

Writing $n=n^{\frac{1}{2}} n^{\frac{1}{2}}$, we see that the last statement is true if and only if

$$
\left[\frac{n^{\frac{1}{2}}}{\log n}\right]^{2} \leq c \text { for all } n \geq n_{0}
$$

Because we know that $\log n=o\left(n^{\frac{1}{2}}\right)$ (in other words, $\lim _{n \rightarrow \infty} \frac{\log n}{\sqrt{n}}=0$), we have that

$$
\frac{n^{\frac{1}{2}}}{\log n} \rightarrow \infty \text { as } n \rightarrow \infty
$$

So $\left[\frac{n^{\frac{1}{2}}}{\log n}\right]^{2} \leq c$ cannot be true for all $n \geq n_{0}$ and for a constant c.
Answer: TRUE, FALSE, TRUE, FALSE.

