Answer on Question #63787 – Math – Algorithms | Quantitative Methods

Question

Are the following TRUE or FALSE. Explain

n2 = O(n2)

n3 = O(n2)

 $n \log n = O(n2)$

 $n2 = O(n \log 2 n)$

Solution

a) $n^2 = O(n^2)$

TRUE. We can see this if we set c = 1, then $n^2 \leq cn^2 = n^2$ for all $n \geq 1$.

Thus, the definition of big-O holds for c = 1 and $n_0 = 1$.

b) $n^3 = O(n^2)$

FALSE. For it to be true, we would need that there exist positive constants c and n_0 such that $n^3 \le cn^2$ for all $n \ge n_0$. By dividing both sides by n^2 , we see that " $n^3 \le cn^2$ for all $n \ge n_0$ " is true if and only if " $n \le c$ for all $n \ge n_0$ " is true, but clearly there are no constants c and n_0 for which the last statement is true.

c) $n \log n = O(n^2)$

TRUE. Because $\ln(1 + x) \le x$ for all x > -1, hence $\ln(1 + x) \le (x + 1) - 1 < 2(x + 1)$.

Therefore, log n = O(n). There exist positive constants c and n_0 such that $log n \leq cn$ for all

 $n \ge n_0$. Multiplying both sides by n gives $n \log n \le cn^2$ for all $n \ge n_0$ for the same positive constants c and n_0 , so $n \log n = O(n^2)$.

d) $n^2 = O(n \log^2 n)$

FALSE. First, note that $n^2 = O(n \log^2 n)$ if and only if there exist positive constants c and n_0 such that $n^2 \le cn \log^2 n$ for all $n \ge n_0$, which holds if and only if

$$\frac{n^2}{n\log^2 n} \text{ for all } n \ge n_0 (1)$$

By cancelling out the *n* from the numerator and the denominator, we can rewrite expression in (1) as

$$\frac{n}{\log^2 n} \le c \text{ for all } n \ge n_0.$$

Writing $n = n^{\frac{1}{2}} n^{\frac{1}{2}}$, we see that the last statement is true if and only if

$$\left[\frac{n^{\frac{1}{2}}}{\log n}\right]^2 \le c \text{ for all } n \ge n_0.$$

Because we know that $\log n = o(n^{\frac{1}{2}})$ (in other words, $\lim_{n \to \infty} \frac{\log n}{\sqrt{n}} = 0$), we have that

$$\frac{n^{\frac{1}{2}}}{\log n} \to \infty \text{ as } n \to \infty.$$

So $\left[\frac{n^{\frac{1}{2}}}{\log n}\right]^2 \leq c$ cannot be true for all $n \geq n_0$ and for a constant c.

Answer: TRUE, FALSE, TRUE, FALSE.