Answer on Question \#63631 - Math - Analytic Geometry

Question

Let O be the origin and $O A=a 1 i+a 2 j+a 3 k$. find the equation of a line that passes through the point (123) and is perpendicular to the vector $3 i+2 j+3 k$.

Solution

There are two ways of solution of this problem

1. The first method

$\vec{a}=m(3 \vec{\imath}+2 \vec{\jmath}+3 \vec{k})$ is a projection of \vec{b} on \vec{c}

$$
\begin{gathered}
\vec{b}=\vec{\imath}+2 \vec{\jmath}+3 \vec{k} \\
\vec{b}+\vec{x}=\vec{a}, \quad \vec{x}=\vec{a}-\vec{b} \\
\vec{x}=(3 m-1) \vec{\imath}+(2 m-2) \vec{\jmath}+(3 m-3) \vec{k}
\end{gathered}
$$

Since $\vec{a} \perp \vec{x}$ then $\vec{a} \cdot \vec{x}=0$ or

$$
\begin{gathered}
((3 m-1) \vec{\imath}+(2 m-2) \vec{\jmath}+(3 m-3) \vec{k}) \cdot(3 \vec{\imath}+2 \vec{\jmath}+3 \vec{k})=0 \\
9 m-3+4 m-4+9 m-9=0 \\
22 m=16 \\
m=\frac{8}{11} \\
\vec{x}=\left(\frac{24}{11}-1\right) \vec{\imath}+\left(\frac{16}{11}-2\right) \vec{\jmath}+\left(\frac{24}{11}-3\right) \vec{k}
\end{gathered}
$$

Thus, the direction vector of the line is

$$
\vec{n}=\frac{13}{11} \vec{\imath}-\frac{6}{11} \vec{\jmath}-\frac{9}{11} \vec{k}
$$

One more collinear vector is $11\left(\frac{13}{11},-\frac{6}{11},-\frac{9}{11}\right)=(13,-6,-9)$.
The line passes through the point (123).
Thus, the equation of the line is

$$
\frac{x-1}{13}=\frac{y-2}{-6}=\frac{z-3}{-9}
$$

Answer: $\frac{x-1}{13}=\frac{y-2}{-6}=\frac{z-3}{-9}$

2. The second method

\vec{n} is a normal to the plane, where the vectors \vec{a} and \vec{b} lie,

$$
\begin{gathered}
\vec{n}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
3 & 2 & 3 \\
1 & 2 & 3
\end{array}\right|=(2 \cdot 3-2 \cdot 3) \vec{\imath}-(3 \cdot 3-1 \cdot 3) \vec{\jmath}+(3 \cdot 2-1 \cdot 2) \vec{k}= \\
=(6-6) \vec{\imath}-(9-3) \vec{\jmath}+(6-2) \vec{k}=0 \vec{\imath}-6 \vec{\jmath}+4 \vec{k}
\end{gathered}
$$

$a \times n$ is a vector that lies on this plane and is perpendicular to \vec{a}, and it is the direction vector of the line
$a \times n=\left|\begin{array}{lll}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 3 & 2 & 3 \\ 0 & -6 & 4\end{array}\right|=(8+18) \vec{\imath}-(12-0) \vec{\jmath}+(-18-0) \vec{k}=26 \vec{\imath}-12 \vec{\jmath}-18 \vec{k}$
This is the direction vector of the line and one more collinear one is

$$
\left(\frac{26}{2},-\frac{12}{2},-\frac{18}{2}\right)=(13,-6,-9)
$$

The line passes through the point (123). Using the condition for collinearity of vectors we get that the equation of the line is

$$
\frac{x-1}{13}=\frac{y-2}{-6}=\frac{z-3}{-9}
$$

Answer: $\frac{x-1}{13}=\frac{y-2}{-6}=\frac{z-3}{-9}$.

