Answer on Question \#63491 - Math - Trigonometry

Question

Simplify $\sqrt{\tan \theta+1 \cdot \cot \theta}$ if $\frac{\pi}{2} \leq \theta \leq \pi$.

Solution

$\begin{aligned} \sqrt{\tan \theta+1 \cdot \cot \theta} & =\sqrt{\tan \theta+\cot \theta}\end{aligned}=\sqrt{\tan \theta+\frac{1}{\tan \theta}}=\sqrt{\frac{(\tan \theta)^{2}+1}{\tan \theta}}=\sqrt{\frac{1}{(\cos \theta)^{2}}} \tan \theta-\sqrt{\frac{1}{\tan \theta \cdot(\cos \theta)^{2}}}$
This expression is not defined for value $\frac{\pi}{2} \leq \theta \leq \pi$, because $\sin (2 \theta)$ should be positive according to the domain of the square root and the denominator, but in fact $\sin (2 \theta) \leq 0$ for $\frac{\pi}{2} \leq \theta \leq \pi$.
Answer: $\frac{\sqrt{2}}{\sqrt{\sin 2 \theta}}$.

