Answer on Question \#63035 - Math - Matrix | Tensor Analysis

Question

WHAT IS MEANT BY $(0,2),(2,0)$ and $(1,1)$ tensor?

Solution

The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and $n+m$ gives the total order of the tensor.

A mixed tensor of rank or order $(m+n)$

$$
T_{j_{1} j_{2} \ldots j_{n}}^{i_{1} i_{2} \ldots i_{m}}
$$

is contravariant of order m and covariant of order n if it obeys the transformation law

$$
\bar{T}_{j_{1} j_{2} \ldots j_{n}}^{i_{1} i_{2} \ldots i_{m}}=\left[J\left(\frac{x}{\bar{x}}\right)\right]^{W} T_{b_{1} b_{2} \ldots b_{n}}^{a_{1} a_{2} \ldots a_{m}} \frac{\partial \bar{x}^{i_{1}}}{\partial x^{a_{1}}} \frac{\partial \bar{x}^{i_{2}}}{\partial x^{a_{2}}} \ldots \frac{\partial \bar{x}^{i_{m}}}{\partial x^{a_{m}}} \cdot \frac{\partial x^{b_{1}}}{\partial \bar{x}_{1} j_{1}} \frac{\partial x^{b_{2}}}{\partial \bar{x}^{j_{2}}} \ldots \frac{\partial x^{b_{n}}}{\partial \bar{x}^{j_{n}}},
$$

where

$$
J\left(\frac{x}{\bar{x}}\right)=\left|\frac{\partial x}{\partial \bar{x}}\right|=\frac{\partial\left(x^{1}, x^{2}, \ldots, x^{N}\right)}{\partial\left(\bar{x}^{1}, \bar{x}^{2}, \ldots, \bar{x}^{N}\right)}
$$

is the Jacobian of the transformation.
When $W=0$ the tensor is called an absolute tensor, otherwise it is called a relative tensor of weight W.

A tensor field of type $(\mathbf{2}, \mathbf{0})$ on the n -dimensional smooth manifold M associates with each x a collection of n^{2} smooth functions $T^{i j}\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ which satisfy the following transformation rule:

$$
\bar{T}^{i j}=\frac{\partial \bar{x}^{i}}{\partial x^{k}} \frac{\partial \bar{x}^{j}}{\partial x^{m}} T^{k m} \quad\left(\text { 'contravariant rank } 2^{\prime}\right)
$$

Inverse metric tensor, bivector are examples of a (2,0)-tensor.
A tensor field of type $(\mathbf{1}, \mathbf{1})$ on the n -dimensional smooth manifold M associates with each x a collection of n^{2} smooth functions $F_{j}^{i}\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ which satisfy the following transformation rule:

$$
\left.\bar{F}_{j}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{k}} \frac{\partial x_{m}}{\partial \bar{x}^{j}} F_{m}^{k} \quad \text { ('mixed with contravariant rank } 1 \text { and covariant rank } 1^{\prime}\right)
$$

A linear transformation is an example of a (1,1)-tensor.

A tensor field of type $(0,2)$ on the n -dimensional smooth manifold M associates with each x a collection of n^{2} smooth functions $E_{i j}\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ which satisfy the following transformation rule:

$$
\left.\bar{E}_{i j}=\frac{\partial x_{k}}{\partial \bar{x}^{j}} \frac{\partial x_{m}}{\partial \bar{x}^{j}} E_{k m} \quad \text { ('covariant rank } 2^{\prime}\right)
$$

A bilinear form is an example of a (0,2)-tensor.

