Answer on Question \#63014 - Math - Differential Equations

Question

The decay of a population by catastrophic two body collisions is described by $\mathrm{dN} / \mathrm{dt}=-\mathrm{kN} 2$.
where 2 is supersubscribe
derive the solution.
$\mathrm{N}(\mathrm{t})=\mathrm{No}(1+\mathrm{t} / \mathrm{T})-1$, where o is subscribe and -1
Supersubscribe

Solution

$$
\frac{d N}{d t}=-k N^{2}
$$

This is a separable differential equation. In order to solve it we have to separate the differential equation and integrate both sides.

$$
\begin{gathered}
\frac{d N}{N^{2}}=-k d t \\
-d\left(\frac{1}{N}\right)=-k d t \\
d\left(\frac{1}{N}\right)=k d t
\end{gathered}
$$

Integration of both sides of the equation yields the general solution

$$
\frac{1}{N}=k \cdot t+C,
$$

where C is an integration constant.
Apply the initial condition and find the value of C :
when $t=0$ we get

$$
\begin{gathered}
\frac{1}{N_{0}}=k \cdot 0+C \\
\frac{1}{N_{0}}=C .
\end{gathered}
$$

Plug C into the general solution.

$$
\frac{1}{N}=k \cdot t+\frac{1}{N_{0}}
$$

Solve for N

$$
\begin{gathered}
N=\frac{1}{k t+\frac{1}{N_{0}}} \\
N=\frac{1}{\frac{1}{N_{0}}\left(k t N_{0}+1\right)}=N_{0}\left(k t N_{0}+1\right)^{-1}
\end{gathered}
$$

If we set $k N_{0}=1 / T$, then

$$
N=N_{0}\left(\frac{t}{T}+1\right)^{-1}
$$

Answer: $N=N_{0}\left(\frac{t}{T}+1\right)^{-1}$, where $T=\frac{1}{k N_{0}}$.

