Answer on Question \#63012 - Math - Differential Equations

Question

The general solution of
$\mathrm{d} 2 \mathrm{~B} / \mathrm{dr} 2+\mathrm{dB} / \mathrm{rdr}-\mathrm{B} / \mathrm{a}^{\wedge} 2=0$
is $\mathrm{B}=\mathrm{C} \operatorname{Io}(\mathrm{ra})+\mathrm{D} \operatorname{Ko}(\mathrm{r} / \mathrm{a})$
In our particular case the solution is Ko.
How we get
$\mathrm{B}=\left(\mathrm{h} / 2\right.$ phi $\left.\mathrm{a}^{\wedge} 2\right) \mathrm{Ko}(\mathrm{r} / \mathrm{a})$
Where $h=$ magnetic flux $=$ Integral $B d 2 r$. Phi=3.14. And $a=\left(m / m e u . n e^{\wedge} 2\right)^{1 / 2}$

Solution

If the solution has to be $B=D K_{0}\left(\frac{r}{a}\right)$, then constant of integration usually can be found by applying boundary conditions. But if boundary conditions are not given, then we can find D as the mean value of B passing through the given region. If the region is a circle with the radius a, then the mean value is

$$
B_{m}=\frac{\int B d S}{S}=\frac{\int B d S}{\pi a^{2}}
$$

Then we get:

$$
B=\frac{\int B d S}{\pi a^{2}} K_{0}\left(\frac{r}{a}\right)
$$

Answer: $B=\frac{\int B d S}{\pi a^{2}} K_{0}\left(\frac{r}{a}\right)$.

