

Answer on Question #63001 – Math – Differential Equations

Question

$d/dr (dB/dr) = B/\text{constant square}$. It gave us $B = r^p e^{-r/\text{constant}}$. The power of "p" is $-1/2$. HOW. SHOW THAT IT IS $-1/2$

Solution

Given the differential equation

$$\frac{d^2B}{dr^2} - \frac{B}{c^2} = 0,$$

search its solution in the following form:

$$B = e^{\lambda r}.$$

The characteristic equation is

$$\lambda^2 - \frac{1}{c^2} = 0,$$

$$\lambda = \pm \frac{1}{c}.$$

The solution of the differential equation is

$$B = c_1 e^{\frac{r}{c}} + c_2 e^{-\frac{r}{c}},$$

where c_1, c_2 are arbitrary real constants.

The solution $B = r^p e^{-\frac{r}{c}}$ would be when

$$p = 0.$$