Answer on Question \#62954 - Math - Differential Equations

Question

Solve this equation

$$
\frac{d^{2} B_{Z}}{d r^{2}}+\frac{1}{r} \frac{d B_{z}}{d r}-\frac{B_{Z}}{a^{2}}=0
$$

where $a=\left(\mathrm{m} / \mathrm{u} \mathrm{ne}{ }^{2}\right)^{1 / 2}$

Solution

$$
\frac{d^{2} B_{z}}{d r^{2}}+\frac{1}{r} \frac{d B_{z}}{d r}-\frac{B_{z}}{a^{2}}=0
$$

Multiply equation by r^{2}, we get

$$
r^{2} \frac{d^{2} B_{z}}{d r^{2}}+r \frac{d B_{z}}{d r}-\frac{r^{2}}{a^{2}} B_{z}=0
$$

Let $\frac{r}{a}=x, \quad \frac{d B_{z}}{d x}=\frac{d B_{z}}{d r} \cdot \frac{d r}{d x}=a \frac{d B_{z}}{d r}, \quad \frac{d^{2} B_{z}}{d x^{2}}=a^{2} \frac{d^{2} B_{z}}{d r^{2}}$, then the equation will become

$$
x^{2} \frac{d^{2} B_{z}}{d x^{2}}+x \frac{d B_{z}}{d x}-x^{2} B_{z}=0
$$

This equation is the modified Bessel's differential equation (at $\alpha=0$)

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-\left(x^{2}+\alpha^{2}\right) y=0
$$

having particular solutions $I_{\alpha}(x)$ and $K_{\alpha}(x)$ which are the modified Bessel's functions (the Bessel's functions of a purely imaginary argument) of the first and second kind respectively. In our case $\alpha=0$, then particular solutions of the equation are $I_{0}(x)$ and $K_{0}(x)$.

The general solution is

$$
B_{z}=C I_{0}(x)+D K_{0}(x),
$$

where C and D are real constants
Replacing x with $\frac{r}{a}$ we get

$$
B_{z}=C I_{0}\left(\frac{r}{a}\right)+D K_{0}\left(\frac{r}{a}\right)
$$

Answer: $B_{Z}=C I_{0}\left(\frac{r}{a}\right)+D K_{0}\left(\frac{r}{a}\right)$.
www.AssignmentExpert.com

