Answer on Question \#62809 - Math - Differential Equations

Question

$\mathrm{dB} / \mathrm{dx}=\mathrm{B} / \mathrm{t} 2$
t is constant. if we solve this we get $\mathrm{B}=\mathrm{B} 0 \mathrm{ex} / \mathrm{t}+\mathrm{B} 0 \mathrm{e}-\mathrm{x} / \mathrm{t}$ if the graph is DECAYING EXPONENTIALY then can we ignore the $\mathrm{B} 0 \mathrm{ex} / \mathrm{t}$ term?

Solution

$B=B_{0} e^{x / t}+B_{0} e^{-x / t}$ is not a solution of equation

$$
\frac{d B}{d x}=\frac{B}{t^{2}}
$$

Because

$$
\frac{d}{d x}\left(B_{0} e^{\frac{x}{t}}+B_{0} e^{-\frac{x}{t}}\right)=B_{0}\left(\frac{1}{t} e^{\frac{x}{t}}-\frac{1}{t} e^{-\frac{x}{t}}\right)=B_{0} \frac{1}{t}\left(e^{\frac{x}{t}}-e^{-\frac{x}{t}}\right) \neq \frac{B}{t^{2}}=\frac{\left(B_{0} e^{x / t}+B_{0} e^{-x / t}\right)}{t^{2}}
$$

But, $B=B_{0} e^{x / t}+B_{0} e^{-x / t}$ is the solution of the equation

$$
\frac{d^{2} B}{d x^{2}}=\frac{B}{t^{2}}
$$

Because

$$
\begin{gathered}
\frac{d^{2} B}{d x^{2}}=\frac{d}{d x}\left(B_{0} \frac{1}{t}\left(e^{\frac{x}{t}}-e^{-\frac{x}{t}}\right)\right)=B_{0} \frac{1}{t} \frac{d}{d x}\left(e^{\frac{x}{t}}-e^{-\frac{x}{t}}\right)=B_{0} \frac{1}{t}\left(\frac{1}{t} e^{\frac{x}{t}}+\frac{1}{t} e^{-\frac{x}{t}}\right)= \\
=B_{0} \frac{1}{t^{2}}\left(e^{\frac{x}{t}}+e^{-\frac{x}{t}}\right)=\frac{B}{t^{2}}
\end{gathered}
$$

Let's solve equation

$$
\frac{d^{2} B}{d x^{2}}=\frac{B}{t^{2}}
$$

We will find the solution in the form

$$
B=e^{\lambda x}
$$

Substituting into the equation yields

$$
\frac{d^{2} B}{d x^{2}}=\lambda^{2} e^{\lambda x}=\frac{1}{t^{2}} e^{\lambda x}
$$

From this we obtain the characteristic equation: $\lambda^{2}=\frac{1}{t^{2}}$. The solutions of this equation are

$$
\lambda= \pm \frac{1}{t} .
$$

Thus we have two particular solutions $B_{1}=e^{x / t}$ and $B_{2}=e^{-x / t}$.
The general solution of the original equation is the linear combination of the particular solutions:

$$
B=C e^{x / t}+D e^{-x / t}
$$

where C and D are some constants which we chose depending on initial or boundaries conditions, if $B \rightarrow 0$ when $x \rightarrow \infty$, we have to take $C=0$, so we have $B=D e^{-x / t}$ or $B=$ $B_{0} e^{-x / t}$ where $B=B_{0}$ at $x=0$

Answer: $B=B_{0} e^{-x / t}$.

